Towards an Innovative Combination of Natural Gas and Liquid Fuel Injection in Spark Ignition Engines

2010 ◽  
Vol 3 (2) ◽  
pp. 196-209 ◽  
Author(s):  
Vivien Delpech ◽  
Jerome Obiols ◽  
Dominique Soleri ◽  
Laurent Mispreuve ◽  
Eric Magere ◽  
...  
2017 ◽  
Vol 18 (9) ◽  
pp. 951-970 ◽  
Author(s):  
Riccardo Amirante ◽  
Elia Distaso ◽  
Paolo Tamburrano ◽  
Rolf D Reitz

The laminar flame speed plays an important role in spark-ignition engines, as well as in many other combustion applications, such as in designing burners and predicting explosions. For this reason, it has been object of extensive research. Analytical correlations that allow it to be calculated have been developed and are used in engine simulations. They are usually preferred to detailed chemical kinetic models for saving computational time. Therefore, an accurate as possible formulation for such expressions is needed for successful simulations. However, many previous empirical correlations have been based on a limited set of experimental measurements, which have been often carried out over a limited range of operating conditions. Thus, it can result in low accuracy and usability. In this study, measurements of laminar flame speeds obtained by several workers are collected, compared and critically analyzed with the aim to develop more accurate empirical correlations for laminar flame speeds as a function of equivalence ratio and unburned mixture temperature and pressure over a wide range of operating conditions, namely [Formula: see text], [Formula: see text] and [Formula: see text]. The purpose is to provide simple and workable expressions for modeling the laminar flame speed of practical fuels used in spark-ignition engines. Pure compounds, such as methane and propane and binary mixtures of methane/ethane and methane/propane, as well as more complex fuels including natural gas and gasoline, are considered. A comparison with available empirical correlations in the literature is also provided.


Author(s):  
Luke H. Cowell ◽  
Amjad Rajput ◽  
Douglas C. Rawlins

A fuel injection system for industrial gas turbine engines capable of using natural gas and liquid fuel in dry, lean premixed combustion is under development to significantly reduce NOx and CO emissions. The program has resulted in a design capable of operating on DF#2 over the 80 to 100% engine load range meeting the current TA LUFT regulations of 96 ppm (dry, @ 15% O2) NOx and 78 ppm CO. When operating on natural gas the design meets the guaranteed levels of 25 ppm NOx and 50 ppm CO. The design approach is to apply lean premixed combustion technology to liquid fuel. Both injector designs introduce the majority of the diesel fuel via airblast alomization into a premixing passage where fuel vaporization and air-fuel premixing occur. Secondary fuel injection occurs through a pilot fuel passage which operates in a partially premixed mode. Development is completed through injector modeling, flow visualization, combustion rig testing, and engine testing. The prototype design tested in development engine environments has operated with NOx emissions below 65 ppm and 20 ppm CO at full load. This paper includes a detailed discussion of the injector design and qualification testing completed on this development hardware.


1998 ◽  
Author(s):  
Fu-Rong Zhang ◽  
Kazuhisa Okamoto ◽  
Satoshi Morimoto ◽  
Fujio Shoji

2020 ◽  
Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin E. Dumitrescu

Abstract Partial conversion of the large inventory of compression-ignition engines to natural-gas (NG) spark-ignition lean-burn operation can reduce U.S. dependence on imported petroleum and enhance national energy security. This paper describes some of the observations made during such an engine conversion and proposes some solutions to alleviate some of the potential issues. The engine conversion in this study consisted from replacing the diesel injector with a spark plug and adding a port fuel injection system for NG delivery. The results indicated that the retrofitted engine performed reliably at lean-burn conditions, despite the different combustion characteristics compared to conventional SI engines. However, the squish region will trap an important fuel fraction (∼30%) and experience less-optimal burning conditions, hence a slower burning rate. This affected the engine efficiency and increased the unburned hydrocarbon and carbon monoxide emissions. From a combustion point of view, the operation of such converted engines can be optimized by increasing the bowl-to-squish volume ratio, optimizing the piston shape (e.g., by removing the central protrusion and avoiding 90-degree edges inside the bowl). The original compression ratio may also need to be reduced to avoid knocking. Moreover, direct gas injection and/or intake charging will increase the volumetric efficiency, which will benefit engine efficiency and emissions.


Sign in / Sign up

Export Citation Format

Share Document