Fuel Effects on Combustion and Emissions of a Direct-Injection Diesel Engine Operating at Moderate to High Engine Speed and Load

Author(s):  
James Szybist ◽  
Patrick Szymkowicz ◽  
William F. Northrop
2008 ◽  
Vol 33-37 ◽  
pp. 801-806
Author(s):  
Abdul Rahim Ismail ◽  
Rosli Abu Bakar ◽  
Semin Ali ◽  
Ismail Ali

Study on computational modeling of 4-stroke single cylinder direct injection diesel engine is presented. The engine with known specification is being modeled using one dimension CFD GT-Power software. The operational parameters of the engine such as power, torque, specific fuel consumption and mean effective pressure which are dependent to engine speed are being discussed. The results from the simulation study are compared with the theoretical results to get the true trend of the results.


1987 ◽  
Vol 109 (2) ◽  
pp. 187-192 ◽  
Author(s):  
A. C. Alkidas

The factors influencing premixed burning and the importance of premixed burning on the exhaust emissions from a small high-speed direct-injection diesel engine were investigated. The characteristics of premixed and diffusion burning were examined using a single-zone heat-release analysis. The mass of fuel burned in premixed combustion was found to be linearly related to the product of engine speed and ignition-delay time and to be essentially independent of the total amount of fuel injected. Accordingly, the premixed-burned fraction increased with increasing engine speed, with decreasing fuel-air ratio and with retarding injection timing. The hydrocarbon emissions did not correlate well with the premixed-burned fraction. In contrast, the oxides of nitrogen emissions were found to increase with decreasing premixed-burned fraction, indicating that diffusion burning, and not premixed burning, is the primary source of oxides of nitrogen emissions.


2007 ◽  
Vol 21 (6) ◽  
pp. 3750-3750 ◽  
Author(s):  
A. S. (Ed) Cheng ◽  
Ansis Upatnieks ◽  
Charles J. Mueller

2007 ◽  
Vol 21 (4) ◽  
pp. 1989-2002 ◽  
Author(s):  
A. S. (Ed) Cheng ◽  
Ansis Upatnieks ◽  
Charles J. Mueller

Author(s):  
P. Raghu ◽  
R. Sundarrajan ◽  
R. Rajaraman ◽  
M. Ramaswamy ◽  
B. Sathyanaryanan

An experimental study has been established to understand the effective cylinder wall heat transfer rate and temperature of a direct injection diesel engine. Temperatures were calculated under a wide range of load at different locations in the cylinder block and cylinder head of the engine using pre-arranged thermocouples to acquire the temperature gradient and consequently realize the equivalent heat transfer rate, cylinder wall temperatures, heat transfer co-efficient and engine speed. Diesel and biodiesel blends (B20 and B100) are used as fuels and the temperature readings are found using a ‘k-type’ thermocouple and temperature readings are noted. Raise in the cylinder temperature is observed as the engine torque increases for the diesel and biodiesel. As the engine speed increases, the exhaust gas velocity involved in and out of the engine will increases and this lead to an increase in the heat transfer co-efficient for diesel and biodiesel.


1996 ◽  
Vol 6 (1) ◽  
pp. 95-109 ◽  
Author(s):  
H. C. Yang ◽  
Hong Sun Ryou ◽  
Y. T. Jeong ◽  
Young Ki Choi

Author(s):  
Nik Rosli Abdullah ◽  
Rizalman Mamat ◽  
Miroslaw L Wyszynski ◽  
Anthanasios Tsolakis ◽  
Hongming Xu

Sign in / Sign up

Export Citation Format

Share Document