A Control Allocation Algorithm for Improving the Fail-Safe Performance of an Electric Vehicle Brake System

Author(s):  
Chong Feng ◽  
Nenggen Ding ◽  
Yongling He ◽  
Guoyan Xu ◽  
Feng Gao
Author(s):  
Jonathan Nadeau ◽  
Philippe Micheau ◽  
Maxime Boisvert

Within the field of electric vehicles, the cooperative control of a dual electro-hydraulic regenerative brake system using the foot brake pedal as the sole input of driver brake requests is a challenging control problem, especially when the electro-hydraulic brake system features on/off solenoid valves which are widely used in the automotive industry. This type of hydraulic actuator is hard to use to perform a fine brake pressure regulation. Thus, this paper focuses on the implementation of a novel controller design for a dual electro-hydraulic regenerative brake system featuring on/off solenoid valves which track an “ideal” brake force distribution. As an improvement to a standard brake force distribution, it can provide the reach of the maximum braking adherence and can improve the energy recovery of a rear-wheel-drive electric vehicle. This improvement in energy recovery is possible with the complete substitution of the rear hydraulic brake force with a regenerative brake force until the reach of the electric powertrain constraints. It is done by performing a proper brake pressure fine regulation through the proposed variable structure control of the on/off solenoid valves provided by the hydraulic platform of the vehicle stability system. Through road tests, the tracking feasibility of the proposed brake force distribution with the mechatronic system developed is validated.


2012 ◽  
Vol 209-211 ◽  
pp. 2094-2099
Author(s):  
Xiu Yuan Xing ◽  
Ze Chang Sun ◽  
Meng Wang

Based on a new type of electro-hydraulic brake system of electric vehicle, the operating principle was studied. A model of hydraulic brake system and corresponding control strategy were built with the co-simulation platform of AMESim and MATLAB. The impact factors of brake pressure change rate were analyzed theoretically. The influences of the main hydraulic parameters were analyzed through simulation, such as volume of brake fluid, type of pipe, ABS valve and brake clearance. The results provide a theoretical basis for the accurate control of wheel cylinder pressure.


Author(s):  
Xian-Xu Bai ◽  
Norman M. Wereley ◽  
Wei Hu ◽  
Dai-Hua Wang

Semi-active shock and vibration isolation systems using magnetorheological energy absorbers (MREAs) require minimization of the field-off damping force at high speed. This is because the viscous damping force for high shaft speed become excessive. This implies that the controllable dynamic force range, defined as the ratio of the field-on damping force to the field-off damping force, is dramatically reduced. In addition, fail-safe MREA performance, if power were to be lost, is of great importance to shock and vibration isolation systems. A key design goal is to minimize field-off damping force while maximizing MREA dynamic force, while maintaining fail-safe performance. This study presents the principle of a bidirectional-controllable MREA that can produce large damping force and dynamic force range, as well as excellent fail-safe performance. The bidirectional-controllable MREA is configured and its hydro-mechanical model is theoretically constructed. From the hydro-mechanical model, the mathematical model for the MREA is established using a Bingham-plastic nonlinear fluid model. The characteristics of the MREA are theoretically evaluated and compared with those of a conventional flow-mode MREA with an identical volume. In order to investigate the feasibility and capability of the bidirectional-controllable MREA in the context of the semi-active shock and vibration isolation systems, a mechanical model of a single-degree-of-freedom (SDOF) isolation system using a bidirectional-controllable MREA is constructed and the governing equation for the SDOF isolation system is derived. A skyhook control algorithm is utilized to improve the shock and vibration isolation performance of the isolation systems. Simulated vibration isolation performance using bidirectional-controllable and conventional MREAs under shock loads due to vertical impulses (the initial velocity is as high as 10 m/s), and sinusoidal vibrations, are evaluated, compared, and analyzed.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 4824-4833 ◽  
Author(s):  
Houhua Jing ◽  
Fengjiao Jia ◽  
Zhiyuan Liu

Sign in / Sign up

Export Citation Format

Share Document