G1000-1-2 Research on Skid Control of Small Electric Vehicle with Hydraulic-Mechanical Hybrid Brake System : Simulation of Braking Force by Four Wheel Hydraulic Model

2010 ◽  
Vol 2010.5 (0) ◽  
pp. 165-166
Author(s):  
Seiya KOBAYASHI ◽  
Hirohiko OGINO
2014 ◽  
Vol 490-491 ◽  
pp. 1120-1125 ◽  
Author(s):  
Fen Zhu Ji ◽  
Xiao Xu Zhou ◽  
Wen Bo Zhu

Motor of electric vehicle is able to be used to brake regeneratively, so braking energy can be recycled. Braking stability of electric vehicles with electro-hydraulic hybrid braking system can be influenced by braking force distribution between hydraulic braking force and regenerative braking force. In order to research on braking stability and braking energy recovery, simulation platform of electro-hydraulic hybrid brake system based on Carsim and Matlab/Simulink is built, and a control strategy of electro-hydraulic hybrid brake were proposed. The vehicle simulation models with electro-hydraulic hybrid brake system and with conventional hydraulic braking system were applied the brake on different adhesion coefficient separately. The simulation results show when electric vehicle is in the conditions of low braking intensity, all vehicle braking force is provided by regenerative braking force, and braking energy can be not only recycled, but brake performance requirement can also be satisfied; when electric vehicle is in the conditions of moderate braking intensity, regenerative braking and hydraulic braking are coordinated with each other, electro-hydraulic hybrid brake can not only satisfy the same and better brake performance, but also braking energy can be recycled and demand of hydraulic pressure can be reduced.


Author(s):  
Yuan-Ting Lin ◽  
Chyuan-Yow Tseng ◽  
Jao-Hwa Kuang ◽  
Yeong-Maw Hwang

The combined brake system (CBS) is a mechanism that links the front and rear brakes for scooters. For two-wheeled scooters, a CBS with appropriate braking force distribution can reduce the risk of crashing accidents due to insufficient driving proficiency. The design of the braking force distribution for a CBS is challenging to the designer because it has to fulfill many requirements such as braking performance, ride comfort, reliability, and low costs. This paper proposes a systematic method to optimize the parameters of CBS. The evaluation indexes for the design are first discussed. The steps to determine the critical parameter to meet the indexes and a method to predict braking performance are developed. Finally, driving tests are carried out to verify the effectiveness of the proposed method. Experimental results showed that the deceleration of the tested scooter equipped with the designed CBS achieves an average mean fully developed deceleration (MFDD) of 5.246 m/s2, higher than the homologation requirement. Furthermore, the proposed method’s prediction of braking performance is in good agreement with the test results, with errors <1%.


2019 ◽  
Vol 10 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Daniel Varecha ◽  
Robert Kohar ◽  
Frantisek Brumercik

Abstract The article is focused on braking simulation of automated guided vehicle (AGV). The brake system is used with a disc brake and with hydraulic control. In the first step, the formula necessary for braking force at the start of braking is derived. The stopping distance is 1.5 meters. Subsequently, a mathematical model of braking is created into which the formula of the necessary braking force is applied. The mathematical model represents a motion equation that is solved in the software Matlab by an approximation method. Next a simulation is created using Matlab software and the data of simulation are displayed in the graph. The transport speed of the vehicle is 1 〖m.s〗^(-1) and the weight of the vehicle is 6000 kg including load. The aim of this article is to determine the braking time of the device depending from the input data entered, which represent the initial conditions of the braking process.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987776 ◽  
Author(s):  
Shengqin Li ◽  
Bo Yu ◽  
Xinyuan Feng

Electric vehicles can convert the kinetic energy of the vehicle into electric energy for recycling. A reasonable braking force distribution strategy is the key to ensure braking stability and the energy recovery rate. For an electric vehicle, based on the ECE regulation curve and ideal braking force distribution (I curve), the braking force distribution strategy of the front and rear axles is designed to study the braking energy recovery control strategy. The fuzzy control method is adopted while the charging power limit of the battery is considered to correct the regenerative braking torque of the motor, the ratio of the regenerative braking force of the motor to the front axle braking force is designed according to different braking strengths, then the braking force distribution and braking energy recovery control strategies for regenerative braking and friction braking are developed. The simulation model of combined vehicle and energy recovery control strategy is established by Simulink and Cruise software. The braking energy recovery control strategy of this article is verified under different braking conditions and New European Driving Cycle conditions. The results show that the control strategy proposed in this article meets the requirements of braking stability. Under the condition of initial state of charge of 75%, the variation of state of charge of braking control strategy in this article is reduced by 8.22%, and the state of charge of braking strategy based on I curve reduces by 9.12%. The braking force distribution curves of the front and rear axle are in line with the braking characteristics, can effectively recover the braking energy, and improve the battery state of charge. Taking the using range of 95%–5% of battery state of charge as calculation target, the cruising range of vehicle with braking control strategy of this article increases to 136.64 km, which showed that the braking control strategy in this article could increase the cruising range of the electric vehicle.


Author(s):  
Jonathan Nadeau ◽  
Philippe Micheau ◽  
Maxime Boisvert

Within the field of electric vehicles, the cooperative control of a dual electro-hydraulic regenerative brake system using the foot brake pedal as the sole input of driver brake requests is a challenging control problem, especially when the electro-hydraulic brake system features on/off solenoid valves which are widely used in the automotive industry. This type of hydraulic actuator is hard to use to perform a fine brake pressure regulation. Thus, this paper focuses on the implementation of a novel controller design for a dual electro-hydraulic regenerative brake system featuring on/off solenoid valves which track an “ideal” brake force distribution. As an improvement to a standard brake force distribution, it can provide the reach of the maximum braking adherence and can improve the energy recovery of a rear-wheel-drive electric vehicle. This improvement in energy recovery is possible with the complete substitution of the rear hydraulic brake force with a regenerative brake force until the reach of the electric powertrain constraints. It is done by performing a proper brake pressure fine regulation through the proposed variable structure control of the on/off solenoid valves provided by the hydraulic platform of the vehicle stability system. Through road tests, the tracking feasibility of the proposed brake force distribution with the mechatronic system developed is validated.


Sign in / Sign up

Export Citation Format

Share Document