An Experimental Investigation of Diesel-Gasoline Blends Effects in a Direct-Injection Compression-Ignition Engine Operating in PCCI Conditions

Author(s):  
Jesus Benajes ◽  
Alberto Broatch ◽  
Antonio Garcia ◽  
Luisa Monico Muñoz
2005 ◽  
Vol 128 (4) ◽  
pp. 921-927 ◽  
Author(s):  
Shrawan Kumar Singh ◽  
Avinash Kumar Agarwal ◽  
Dhananjay Kumar Srivastava ◽  
Mukesh Sharma

This experimental investigation was aimed to investigate the effect of exhaust gas recirculation (EGR) on wear of in-cylinder engine parts. EGR setup was prepared for a two-cylinder, air-cooled, constant-speed direct-injection compression-ignition engine. Test setup was run for 96hr under predetermined loading cycles in two phases; normally, operating condition (i.e., without EGR) and with a fixed EGR rate of 25%. Addition of metallic wear debris in the lubricating oil samples drawn after regular interval from both engine operating phases was investigated. Relatively higher concentrations of all wear metals were found in the lubricating oil of the EGR-operated engine, which indicates higher wear of various engine parts. Weight loss of piston rings used in both phases was compared to quantify the amount of wear of piston rings. To quantify the amount of cylinder wear surface roughness parameters of cylinder liners were measured at three positions (top dead center, mid-stroke, and bottom dead center) on thrust and anti-thrust side. A qualitative analysis was also carried out by taking surface profiles and Scanning Electron Micrographs at same locations.


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 33863-33868 ◽  
Author(s):  
M. Jindal ◽  
P. Rosha ◽  
S. K. Mahla ◽  
A. Dhir

Experimental investigations were conducted to evaluate the effects of n-butanol in biodiesel–diesel blends on the performance and emissions characteristics of a constant speed, direct injection diesel engine.


2021 ◽  
pp. 146808742110183
Author(s):  
Jonathan Martin ◽  
André Boehman

Compression-ignition (CI) engines can produce higher thermal efficiency (TE) and thus lower carbon dioxide (CO2) emissions than spark-ignition (SI) engines. Unfortunately, the overall fuel economy of CI engine vehicles is limited by their emissions of nitrogen oxides (NOx) and soot, which must be mitigated with costly, resource- and energy-intensive aftertreatment. NOx and soot could also be mitigated by adding premixed gasoline to complement the conventional, non-premixed direct injection (DI) of diesel fuel in CI engines. Several such “dual-fuel” combustion modes have been introduced in recent years, but these modes are usually studied individually at discrete conditions. This paper introduces a mapping system for dual-fuel CI modes that links together several previously studied modes across a continuous two-dimensional diagram. This system includes the conventional diesel combustion (CDC) and conventional dual-fuel (CDF) modes; the well-explored advanced combustion modes of HCCI, RCCI, PCCI, and PPCI; and a previously discovered but relatively unexplored combustion mode that is herein titled “Piston-split Dual-Fuel Combustion” or PDFC. Tests show that dual-fuel CI engines can simultaneously increase TE and lower NOx and/or soot emissions at high loads through the use of Partial HCCI (PHCCI). At low loads, PHCCI is not possible, but either PDFC or RCCI can be used to further improve NOx and/or soot emissions, albeit at slightly lower TE. These results lead to a “partial dual-fuel” multi-mode strategy of PHCCI at high loads and CDC at low loads, linked together by PDFC. Drive cycle simulations show that this strategy, when tuned to balance NOx and soot reductions, can reduce engine-out CO2 emissions by about 1% while reducing NOx and soot by about 20% each with respect to CDC. This increases emissions of unburnt hydrocarbons (UHC), still in a treatable range (2.0 g/kWh) but five times as high as CDC, requiring changes in aftertreatment strategy.


Sign in / Sign up

Export Citation Format

Share Document