The Inovar-Auto Program and its Influences on the Dual Fuel Engines Concepts based in Diesel Cycle

2013 ◽  
Author(s):  
Cléliomiro de Sousa Lourenço ◽  
Tiago de Sousa ◽  
André Luiz Pereira
Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4307
Author(s):  
Roberta De Robbio ◽  
Maria Cristina Cameretti ◽  
Ezio Mancaruso ◽  
Raffaele Tuccillo ◽  
Bianca Maria Vaglieco

Dual fuel engines induce benefits in terms of pollutant emissions of PM and NOx together with carbon dioxide reduction and being powered by natural gas (mainly methane) characterized by a low C/H ratio. Therefore, using natural gas (NG) in diesel engines can be a viable solution to reevaluate this type of engine and to prevent its disappearance from the automotive market, as it is a well-established technology in both energy and transportation fields. It is characterized by high performance and reliability. Nevertheless, further improvements are needed in terms of the optimization of combustion development, a more efficient oxidation, and a more efficient exploitation of gaseous fuel energy. To this aim, in this work, a CFD numerical methodology is described to simulate the processes that characterize combustion in a light-duty diesel engine in dual fuel mode by analyzing the effects of the changes in engine speed on the interaction between fluid-dynamics and chemistry as well as when the diesel/natural gas ratio changes at constant injected diesel amount. With the aid of experimental data obtained at the engine test bench on an optically accessible research engine, models of a 3D code, i.e., KIVA-3V, were validated. The ability to view images of OH distribution inside the cylinder allowed us to better model the complex combustion phenomenon of two fuels with very different burning characteristics. The numerical results also defined the importance of this free radical that characterizes the areas with the greatest combustion activity.


2021 ◽  
Vol 100 ◽  
pp. 104179
Author(s):  
Andrea Coraddu ◽  
Luca Oneto ◽  
Davide Ilardi ◽  
Sokratis Stoumpos ◽  
Gerasimos Theotokatos

Biofuels ◽  
2016 ◽  
Vol 9 (1) ◽  
pp. 75-87 ◽  
Author(s):  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
R. S. Hosmath ◽  
M. R. Indudhar ◽  
Suresh Guluwadi ◽  
...  

2003 ◽  
Vol 4 (5) ◽  
pp. 591-594 ◽  
Author(s):  
Fei Shao-mei ◽  
Liu Zhen-tao ◽  
Yan Zhao-da

2019 ◽  
Vol 138 ◽  
pp. 596-604 ◽  
Author(s):  
Fabio Ernanes Czarneski ◽  
Stephan Hennings Och ◽  
Luís Mauro Moura ◽  
Eric Domingues

2009 ◽  
Vol 44 (6) ◽  
pp. 978-978
Author(s):  
Senichi Sasaki
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document