ANALYSIS OF LAMBDA, ANGLE OF INJECTION AND SUBSTITUTION RATE IN HYDROCARBONS EMISSIONS IN DIESEL CYCLE ENGINE OPERATING IN DUAL FUEL MODE

Author(s):  
Silvio Cesar de Lima Nogueira ◽  
Stephan Hennings Och ◽  
Luís Mauro Moura
Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


2009 ◽  
Vol 44 (6) ◽  
pp. 978-978
Author(s):  
Senichi Sasaki
Keyword(s):  

2013 ◽  
Vol 325-326 ◽  
pp. 1176-1179
Author(s):  
Xiao Ning Lv ◽  
Jiang Tao Qin ◽  
Jing Bo Li ◽  
Bo Wen Zou ◽  
Fu Qiang Luo

In order to convert the high pressure common rail system engine to CNG/Diesel dual fuel engine, an electronically controlled system is developed. The system includes a CNG fuel supply system, the CNG electronic control unit (ECU) and its matching harness etc. During starting and idle load conditions, the engine runs under pure diesel mode, when the speed and load reached a certain set point, the diesel ECU reduces the pilot diesel quantity, meanwhile, the CNG ECU increases the natural gas quantity, then the engine runs under dual fuel mode. The engine experiment data show that in different conditions, the highest substitution rate is 90% and the average substitution rate is 83%; the average savings ratio of operation cost per hour is 26%.


Author(s):  
Youyao Fu ◽  
Bing Xiao

The diesel and natural gas dual-fuel engine has gained increasing interest in recent years because of its excellent power and economy. However, the diesel substitution rate cannot be controlled optimally, owing to the lack of a feedback indicator reflecting the cylinder combustion process, which easily leads to a serious thermal load problem. This paper presents a closed-loop control with feedback from a piston maximum temperature (PMT) pattern to regulate the diesel substitution rate in real time. A v-support vector machine ( v-SVM) is proposed to train classifiers for online recognition of the PMT pattern. Nitrogen oxide (NOx) emission levels, excess air coefficient, engine speed and inlet pressure are chosen as feature variables. The PMTs, calculated by finite element analysis in ANSYS, are utilized to determine the labels of feature data. Moreover, 10-fold cross-validation is employed to choose the optimal kernel function, kernel parameters and penalty factor. A synthetic minority oversampling technique (SMOTE) is introduced to remedy the class imbalance problem in training classifiers. Furthermore, a timer-based debouncing mechanism is employed to alleviate the dynamic process influence on the PMT pattern recognition. Experiment revealed that the classifiers yield desirable predictions, with classification accuracies higher than 90%. Meanwhile, the diesel substitution rates are regulated to appropriate values through the closed-loop control algorithm, which guarantees that the dual-fuel engine runs in its safe region and maintains its excellent economy.


Author(s):  
Xiangyu Meng ◽  
Yuanxu Li ◽  
Karthik Nithyanandan ◽  
Wuqiang Long ◽  
Chia-Fon F. Lee

Dual-fuel combustion mode with direct injection of diesel as the pilot fuel and port injection of compressed natural gas (CNG) in compression ignition (CI) engines has been widely investigated to comply with the latest emission regulations. The diesel-CNG dual-fuel combustion mode shows some potential to decrease NOx and soot emissions simultaneously, while it reveals a lower thermal efficiency compared to the pure diesel combustion mode under low load condition. The purpose of the current study is to investigate the possibility of using diesel blended with 1-butanol as the pilot fuel to enhance the engine performance and reduce emissions. Three pilot fuels — B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with the CNG substitution rates of 50% and 80% were compared at an engine speed of 1200 rpm. The experiments were conducted by sweeping the pilot fuel injection timing from −3 to −18 ° CA ATDC with an equivalent total energy (∼5 bar IMEP). The results illustrated that, for the 50% CNG substitution rate, the dual-fuel operation mode revealed a higher indicated thermal efficiency (ITE) under low load conditions, and B10 can significantly improve the ITE due to the shorter combustion duration. The emission results of B10 showed that it obtained lower THC and CO emissions, but a slightly higher NOx emission. For the 80% CNG substitution rate, the results presented lower ITE, higher THC and lower NOx emissions, comparatively.


Fuel ◽  
2021 ◽  
Vol 294 ◽  
pp. 120499
Author(s):  
Zhongshu Wang ◽  
Xiaodong Fu ◽  
Dan Wang ◽  
Yun Xu ◽  
Guizhi Du ◽  
...  

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Karthik Nithyanandan ◽  
Jiaxiang Zhang ◽  
Yuqiang Li ◽  
Xiangyu Meng ◽  
Robert Donahue ◽  
...  

The use of natural gas in compression ignition (CI) engines as a supplement to diesel under dual-fuel combustion mode is a promising technique to increase efficiency and reduce emissions. In this study, the effect of dual-fuel operating mode on combustion characteristics, engine performance and pollutant emissions of a diesel engine using natural gas as primary fuel and neat diesel as pilot fuel, has been examined. Natural gas (99% methane) was port injected into an AVL 5402 single cylinder diesel research engine under various engine operating conditions and up to 90% substitution was achieved. In addition, neat diesel was also tested as a baseline for comparison. The experiments were conducted at three different speeds—1200, 1500, and 2000 rpm, and at different diesel-equivalent loads (injection quantity)—15, 20 (7 bar IMEP), and 25 mg/cycle. Both performance and emissions data are presented and discussed. The performance was evaluated through measurements of in-cylinder pressure, power output and various exhaust emissions including unburned hydrocarbons (UHCs), carbon monoxide (CO), nitrogen oxides (NOx), and soot. The goal of these experiments was to maximize the efficiency. This was done as follows—the compressed natural gas (CNG) substitution rate (based on energy) was increased from 30% to 90% at fixed engine conditions, to identify the optimum CNG substitution rate. Then using that rate, a main injection timing sweep was performed. Under these optimized conditions, combustion behavior was also compared between single, double, and triple injections. Finally, a load and speed sweep at the optimum CNG rate and timings were performed. It was found that a 70% CNG substitution provided the highest indicated thermal efficiency (ITE). It appears that dual-fuel combustion has a maximum brake torque (MBT) diesel injection timing for different conditions which provides the highest torque. Based on multiple diesel injection tests, it was found that the conditions that favor pure diesel combustion, also favor dual-fuel combustion because better diesel combustion provides better ignition and combustion for the CNG-air mixture. For 70% CNG dual-fuel combustion, multiple diesel injections showed an increase in the efficiency. Based on the experiments conducted, diesel-CNG dual-fuel combustion is able to achieve similar efficiency and reduced emissions relative to pure diesel combustion. As such, CNG can be effectively used to substitute for diesel fuel in CI engines.


2013 ◽  
Author(s):  
Cléliomiro de Sousa Lourenço ◽  
Tiago de Sousa ◽  
André Luiz Pereira

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2349 ◽  
Author(s):  
Hua Zhou ◽  
Hong-Wei Zhao ◽  
Yu-Peng Huang ◽  
Jian-Hui Wei ◽  
Yu-Hui Peng

A throttle can be installed on the intake pipe of a natural gas (NG)/diesel dual-fuel engine to control the excess air ratio of the air-fuel mixture by adjusting the air intake. Building on a previously proposed NG/diesel dual-fuel supply strategy using the adjustment of excess air ratio, this work further studied the effects of different injection timing schemes on output power, fuel efficiency, and pollutant emissions of a dual-fuel engine under low to medium load conditions. In the experiment, the engine was operated at a speed of 1600 r/min, under either low (27.1 N·m) or medium (50.6 N·m) loads, and the NG substitution rate was either 40%, 60%, or 80%. The effect of different injection timing schemes on the combustion performance of the engine under low to medium load conditions was studied based on in-cylinder pressure changes detected by a pressure sensor. Experimental results showed that under medium-speed low-load conditions and a NG substitution rate of 40%, setting the diesel injection timing to 27 °CA BTDC increased the engine output power by 9.03%, reduced the brake specific energy consumption (BSEC) by 13.33%, and effectively reduced CO, CO2, and HC emissions. Under medium-speed medium-load conditions with a NG substitution rate of 80%, setting the diesel injection timing to 25 °CA BTDC increased the engine output power by 14.62%, reduced the BSEC by 11.73%, and significantly reduced CO, CO2, and HC emissions.


Sign in / Sign up

Export Citation Format

Share Document