Numerical Simulation of Fluid Flow and Heat Transfer in Finned Tube Heat Exchanger: Comparison of Two Different Designs

Author(s):  
Shi-Ing Chang ◽  
Iman Goldasteh ◽  
Salamah Maaita ◽  
Gursaran Mathur
2013 ◽  
Vol 353-356 ◽  
pp. 3081-3084
Author(s):  
Jun Zhai ◽  
Meng Qin ◽  
Feng Guo Liu

With the CFD calculation software FLUENT, numerical simulation has been conducted to study the surface flow and heat transfer in inclined wave fin-and-tube heat exchanger, including uniform angle wave fin and inclined increase-angle wave fin. Velocity field, pressure field and the distribution of temperature field on the air side of fin surface were obtained. Heat transfer performance of the two kinds of fin were discussed and the curve of both heat exchange and pressure drop related to the inlet velocity were analyzed. The results indicates that in the same conditions, heat transfer effect is better than uniform angle wave fin. When the inlet velocity is 4 m/s ,the heat transfer of inclined increase-angle wave fin is about 1.1 times higher than that of uniform angle wave fin meanwhile the pressure resistance is as much as around 1.2 times, which provides a theoretical basis on heat transfer enhancement of wave finned tube.


2013 ◽  
Vol 732-733 ◽  
pp. 186-189
Author(s):  
Jing Zhao Zhang

A numerical investigation of the flow and heat transfer in a two-row finned-tube heat exchanger is conducted with a three-dimensional conjugated model using the CFD software. The results show that, compared to the quadrate slotted fin, the circular slotted fin have good heat transfer performance in that the percentage increase in heat transfer is higher than that in the friction factor. Within the Reynolds number range compared ( from 1,270 to 8,892), the Nusselt number of new slit 1 is about 25.6-61.6% and 20.8-57.5%, while new slit 2 is about 26.8-33.6% and 25.8-33.0%, higher than that of the quadrate slotted fin surface at identical pressure drop and the identical pumping power, respectively. For the two-row plate fin-and-tube heat exchanger, new slit 2 is recommended for the use in air-conditioning because its integrative design.


Author(s):  
M. Rajeshkumar ◽  
K. Logesh ◽  
M. Thangaraj ◽  
S. Govindan

2016 ◽  
Vol 37 (2) ◽  
pp. 3-22 ◽  
Author(s):  
Pavan Kumar Konchada ◽  
Vinay Pv ◽  
Varaprasad Bhemuni

AbstractThe presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD) package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3) nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA) results show that the inlet temperature on shell side has more pronounced effect on entropy generation.


2011 ◽  
Vol 130-134 ◽  
pp. 1686-1690 ◽  
Author(s):  
De Qi Peng ◽  
Wei Qiang Wang ◽  
Tian Lan Yu ◽  
Biao Wei ◽  
Yu Zhou ◽  
...  

For solving cleaning fouling online for shell-and-tube heat exchanger,an asymmetric spiral-gear cleaning technology is presented. The RNGk-εturbulent model is used to simulate the fluid flow and heat transfer of the tube with the spiral-gear. Its velocity and turbulent intensity field, convection heat transfer characteristic and resistance property are analyzed. Numerical simulation results shows that radial velocity is larger in the annular area near the tube wall than that in the smooth tube. Tangential velocity in the diameter area corresponding to the width of spiral-gear insertion increases with radius,but it decreases with radius in the annular clearance between the insert and the tube wall. However, fluid tangential motion of the smooth tube is only stochastic,and its tangential velocity is lower several orders of magnitude than that for the tube with the insertions. The average surface heat transfer coefficient of the spiral-gear-inserted tube wall is increased nearly 88% than that from the smooth tube wall. In addition, the pressure drop caused by spiral-gear inserts is in the permissible range of engineering application. The inserts is applicable to the heat exchangers at a flow rate lower than 0.8 m·s-1.


Sign in / Sign up

Export Citation Format

Share Document