Experimental and Numerical Characterization of High-Pressure Methane Jets for Direct Injection in Internal Combustion Engines

2020 ◽  
Author(s):  
Alessandro Montanaro ◽  
Luigi Allocca ◽  
Angelo De Vita ◽  
Stefano Ranieri ◽  
Francesco Duronio ◽  
...  
MTZ worldwide ◽  
2021 ◽  
Vol 82 (7-8) ◽  
pp. 42-45
Author(s):  
Bernhard Bobusch ◽  
Thomas Ebert ◽  
Anja Fink ◽  
Oliver Nett

Author(s):  
Junfeng Zhao ◽  
Junmin Wang

This paper investigates the impact of fuel property variations on the common rail pressure fluctuation in high-pressure common rail (HPCR) system and explores the possibility of identifying the fuel types based on the measurement of rail pressure for internal combustion engines. Fluid transients, particularly the water hammer effect in a HPCR system, are discussed and the 1D governing equations are given. A typical HPCR system model is developed in GT-Suite with the injectors, three-plunger high-pressure pump, and pressure control valve being modeled in a relatively high level of detail. Four different fuels including gasoline, ethanol, diesel, and biodiesel are modeled and their properties including density, bulk modulus, and acoustic wave speed are validated against data in the literature. Simulation results are obtained under different conditions with variable rail pressures and engine speeds. To reduce the excessive rail pressure oscillation caused by multiple injections, only four main-injections are enabled in each engine revolution. The results show that the natural frequency of a common rail varies with the type of fuel filled in it. By applying the fast Fourier transform (FFT) to the pressure signal, the differences of fuel properties can be revealed in the frequency domain. The experiment validation is conducted on a medium-duty diesel engine, which is equipped with a typical HPCR system and piezo-electric injectors. Tests results are given for both pure No. 2 diesel and pure soybean biodiesel at different rail pressure levels and different engine speeds. This approach is proved to be potentially useful for fuel property identification of gasoline-ethanol or diesel-biodiesel blends on internal combustion engines.


1980 ◽  
Vol 194 (1) ◽  
pp. 157-169
Author(s):  
L. C. Hall ◽  
M. E. Saatci

This paper reports on a study into the feasibility of generating steam, using the exhaust gases of a reciprocating internal combustion engine, and expanding it in the cylinders of the engine to produce additional power without increasing the fuel consumption. The study was conducted in three stages; firstly an equivalent ideal thermodynamic cycle was analysed to examine the fundamental principles, secondly a computer simulation was carried out based on a particular engine, and thirdly an attempt was made to modify the engine and run it with steam injection. The results suggest that this proposal is thermodynamically sound and could in practice permit substantial gains in efficiency using relatively straightforward technology.


2017 ◽  
Vol 15 (4) ◽  
pp. 28-39
Author(s):  
A. Tanev ◽  
P. Mitsev ◽  
T. Lazarova

Abstract This paper presents novel green automotive platinum sensing technology together with pressure sensors design principles and applications. In recent years, worldwide emissions legislation has been introduced and is rapidly becoming more stringent. With alternative vehicular propulsion methods far from becoming mainstream reality, leading automotive providers have intensified efforts in the direction of reducing the harmful footprint of their products. This is being accomplished via smaller, appropriately designed internal combustion engines, necessitating an increased and higher-performance sensor content per vehicle. This paper elaborates on temperature sensor application in automotive exhaust gas performance sensing and as well as pressure sensors in different challenging automotive applications with very high pressure levels.


CrystEngComm ◽  
2019 ◽  
Vol 21 (30) ◽  
pp. 4427-4436
Author(s):  
X. Liu ◽  
C. L. Bull ◽  
A. K. Kleppe ◽  
P. J. Dowding ◽  
K. Lewtas ◽  
...  

The widespread use of biodiesel as a renewable fuel offers many potential advantages, but at the same time presents challenges for modern internal combustion engines, particularly for those that involve high-pressure injection of fuel into the combustion chamber.


2021 ◽  
Author(s):  
Zhiyu Han

Simulation and Optimization of Internal Combustion Engines provides the fundamentals and up-to-date progress in multidimensional simulation and optimization of internal combustion engines. While it is impossible to include all the models in a single book, this book intends to introduce the pioneer and/or the often-used models and the physics behind them providing readers with ready-to-use knowledge. Key issues, useful modeling methodology and techniques, as well as instructive results, are discussed through examples. Readers will understand the fundamentals of these examples and be inspired to explore new ideas and means for better solutions in their studies and work. Topics include combustion basis of IC engines, mathematical descriptions of reactive flow with sprays, engine in-cylinder turbulence, fuel sprays, combustions and pollutant emissions, optimization of direct-injection gasoline engines, and optimization of diesel and alternative fuel engines.


Sign in / Sign up

Export Citation Format

Share Document