Analysis of Solidification Behavior of Compacted Graphite Iron Exhaust Manifold and Its Comparison with Si-Mo Ductile Iron

2021 ◽  
Author(s):  
Prafull Patil ◽  
Basker Balaji P K ◽  
Mohammad Saifullah Khan
Author(s):  
Prof. S. K. Paknikar

<p>The invention of Compacted Graphite Iron and documentation of Compacted Graphite Iron (C.G.I.) were made during pioneering research on production techniques in the late 1940s. They found that when the residual magnesium or cerium content was insufficient to stabilize a fully spheroidal graphite then the intermediate form of graphite is formed which is Compacted Graphite or vermicular appeared in the microstructure. It was up to 1960s that CGI began to be recognized as a modern material combining much of the strength and stiffness of ductile iron with the thermal conductivity and castability of grey cast iron.</p><p>Today the result is that where reduced weight and improved performance particularly for automobile cylinder blocks and heads; where mechanical and physical properties of CGI can contribute to meeting the conflicting requirements of weight reduction, improved performance, reduced emissions, recyclability and cost reduction there is tremendous demand for Compacted Graphite Iron to substitute grey iron or ductile iron castings.</p>


2020 ◽  
Vol 28 ◽  
pp. 1286-1294
Author(s):  
Evangelia Nektaria Palkanoglou ◽  
Konstantinos P. Baxevanakis ◽  
Vadim V. Silberschmidt

2019 ◽  
Vol 32 (5-6) ◽  
pp. 243-251 ◽  
Author(s):  
Dongmei Xu ◽  
Guiquan Wang ◽  
Xiang Chen ◽  
Yanxiang Li ◽  
Yuan Liu ◽  
...  

Author(s):  
Niniza S. P. Dlamini ◽  
Iakovos Sigalas ◽  
Andreas Koursaris

Cutting tool wear of polycrystalline cubic boron nitride (PcBN) tools was investigated in oblique turning experiments when machining compacted graphite iron at high cutting speeds, with the intention of elucidating the failure mechanisms of the cutting tools and presenting an analysis of the chip formation process. Dry finish turning experiments were conducted in a CNC lathe at cutting speeds in the range of 500–800m/min, at a feed rate of 0.05mm/rev and depth of cut of 0.2mm. Two different tool end-of-life criteria were used: a maximum flank wear scar size of 0.3mm (flank wear failure criterion) or loss of cutting edge due to rapid crater wear to a point where the cutting tool cannot machine with an acceptable surface finish (surface finish criterion). At high cutting speeds, the cutting tools failed prior to reaching the flank wear failure criterion due to rapid crater wear on the rake face of the cutting tools. Chip analysis, using SEM, revealed shear localized chips, with adiabatic shear bands produced in the primary and secondary shear zones.


2018 ◽  
Vol 925 ◽  
pp. 318-325
Author(s):  
Rohollah Ghasemi ◽  
Anders E.W. Jarfors

The present study focuses on scratch behaviour of a conventional pearlitic and a number of solid solution strengthened ferritic Compacted Graphite Iron (CGI) alloys. This was done by employing a single-pass microscratch test using a sphero-conical diamond indenter under different constant normal loads conditions. Matrix solution hardening was made by alloying with different content of Si alloy; (3.66, 4.09 and 4.59 wt%. Si) which are named as low-Si, medium-Si and high-Si ferritic CGI alloys, respectively. A good correlation between the tensile and scratch test results was observed explaining the influence of CGI’s matrix characteristics on scratch behaviour both for pearlitic and fully ferritic solution strengthened ones. Both the scratch depth and scratch width showed strong tendency to increase with increasing the normal load, however the pearlitic one showed more profound deformation compared to the solution strengthened CGI alloys. Among the investigated alloys, the maximum and minimum scratch resistance was observed for high-Si ferritic CGI and pearlitic alloys, respectively. It was confirmed by the scratched surfaces analysed using Scanning Electron Microscopy (SEM) as well. In addition, the indenter’s depth of penetration value (scratch depth) was found as a suitable measure to ascertain the scratch resistance of CGI alloys.Keywords: Silicon solution strengthening, CGI, Abrasion, Scratch testing, Scratch resistance


Sign in / Sign up

Export Citation Format

Share Document