Development of Coated Gasoline Particulate Filter Design Method Combining Simulation and Multi-Objective Optimization

2021 ◽  
Author(s):  
Yuki Ota ◽  
Hiroaki Takahasi ◽  
Ryosuke Maekawa
2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


2003 ◽  
Vol 39 (8) ◽  
pp. 695 ◽  
Author(s):  
G. Jovanovic-Dolecek ◽  
J. Diaz-Carmona

2011 ◽  
Vol 128-129 ◽  
pp. 181-184
Author(s):  
You Lian Zhu ◽  
Cheng Huang

Design of morphological filter greatly depends on morphological operations and structuring elements selection. A filter design method used median closing morphological operation is proposed to enhance the image denoising ability and the PSO algorithm is introduced for structural elements selecting. The method takes the peak value signal-to-noise ratio (PSNR) as the cost function and may adaptively build unit structuring elements with zero square matrix. Experimental results show the proposed method can effectively remove impulse noise from a noisy image, especially from a low signal-to-noise ratio (SNR) image; the noise reduction performance has obvious advantages than the other.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 133
Author(s):  
Nien-Che Yang ◽  
Danish Mehmood

Harmonic distortion in power systems is a significant problem, and it is thus necessary to mitigate critical harmonics. This study proposes an optimal method for designing passive power filters (PPFs) to suppress these harmonics. The design of a PPF involves multi-objective optimization. A multi-objective bee swarm optimization (MOBSO) with Pareto optimality is implemented, and an external archive is used to store the non-dominated solutions obtained. The minimum Manhattan distance strategy was used to select the most balanced solution in the Pareto solution set. A series of case studies are presented to demonstrate the efficiency and superiority of the proposed method. Therefore, the proposed method has a very promising future not only in filter design but also in solving other multi-objective optimization problems.


Author(s):  
Andrew J. Robison ◽  
Andrea Vacca

A gerotor gear generation algorithm has been developed that evaluates key performance objective functions to be minimized or maximized, and then an optimization algorithm is applied to determine the best design. Because of their popularity, circular-toothed gerotors are the focus of this study, and future work can extend this procedure to other gear forms. Parametric equations defining the circular-toothed gear set have been derived and implemented. Two objective functions were used in this kinematic optimization: maximize the ratio of displacement to pump radius, which is a measure of compactness, and minimize the kinematic flow ripple, which can have a negative effect on system dynamics and could be a major source of noise. Designs were constrained to ensure drivability, so the need for additional synchronization gearing is eliminated. The NSGA-II genetic algorithm was then applied to the gear generation algorithm in modeFRONTIER, a commercial software that integrates multi-objective optimization with third-party engineering software. A clear Pareto front was identified, and a multi-criteria decision-making genetic algorithm was used to select three optimal designs with varying priorities of compactness vs low flow variation. In addition, three pumps used in industry were scaled and evaluated with the gear generation algorithm for comparison. The scaled industry pumps were all close to the Pareto curve, but the optimized designs offer a slight kinematic advantage, which demonstrates the usefulness of the proposed gerotor design method.


Author(s):  
Luying Zhang ◽  
Gabriel Davila ◽  
Mehrdad Zangeneh

Abstract This paper presents three different multi-objective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head. The first two optimization strategies use a 3D inverse design method to parametrize the blade geometry. Both meridional shape and 3D blade geometry is changed during the optimization. In the first approach Design of Experiment method is used and the efficiency computed from CFD computations, while cavitation is evaluated by using minimum pressure on blade surface predicted by 3D inverse design method. The design matrix is then used to create a surrogate model where optimization is run to find the best tradeoff between cavitation and efficiency. This optimized geometry is manufactured and tested and is found to be 3.9% more efficient than the baseline with little cavitation at high flow. In the second approach the 3D inverse design method output is used to compute the efficiency and cavitation parameters and this leads to considerable reduction to the computational time. The resulting optimized geometry is found to be similar to the more computationally expensive solution based on 3D CFD results. In order to compare the inverse design based optimization to the conventional optimization an equivalent optimization is carried out by parametrizing the blade angle and meridional shape. Two different approaches are used for conventional optimization one in which the blade angle at TE is not constrained and one in which blade angles are constrained. In both cases larger variation in head is obtained when compared with the inverse design approach. This makes it impossible to create an accurate surrogate model. Furthermore, the efficiency levels in the conventional optimization is generally lower than the inverse design based optimization.


Sign in / Sign up

Export Citation Format

Share Document