High-Speed Camera based Experimental Modal Analysis for Dynamic Testing of an Automotive Coil Spring

2021 ◽  
Author(s):  
Felix Simeon Egner ◽  
Yonggang Wang ◽  
Thijs Willems ◽  
Matteo Kirchner ◽  
Bert Pluymers ◽  
...  
2013 ◽  
Vol 486 ◽  
pp. 36-41 ◽  
Author(s):  
Róbert Huňady ◽  
František Trebuňa ◽  
Martin Hagara ◽  
Martin Schrötter

Experimental modal analysis is a relatively young part of dynamics, which deals with the vibration modes identification of machines or their parts. Its development has started since the beginning of the eighties, when the computers hardware equipment has improved and the fast Fourier transform (FFT) could be used for the results determination. Nowadays it provides an uncountable set of vibration analysis possibilities starting with conventional contact transducers of acceleration and ending with modern noncontact optical methods. In this contribution we mention the use of high-speed digital image correlation by experimental determination of mode shapes and modal frequencies. The aim of our work is to create a program application called Modan 3D enabling the performing of experimental modal analysis and operational modal analysis. In this paper the experimental modal analysis of a thin steel sample performed with Q-450 Dantec Dynamics is described. In Modan 3D the experiment data were processed and the vibration modes were determined. The reached results were verified by PULSE modulus specialized for mechanical vibration analysis.


2013 ◽  
Vol 694-697 ◽  
pp. 370-373
Author(s):  
Zhang Yu ◽  
Wen Zheng Cai

With the purpose of realizing the analysis of mechanical structure dynamic characteristics and inhibit vibration and noise, combined with the analysis of a certain type of high speed sewing machines vibration characteristics, we carry on the concrete experimental modal analysis, and compare the results of the experimental modal analysis with the results of spectrum analysis. The analysis results show that the second order natural frequency of the shell is close to two octaves under the normal working speed of sewing machine and it will lead to resonance. Enhancing the structural rigidity and the natural frequency under this modal to avoid resonance frequency is the key to improve vibration resistance of the structure.


2012 ◽  
Vol 723 ◽  
pp. 159-163 ◽  
Author(s):  
Fei Xiao ◽  
Xian Li Liu ◽  
Yan Xin Wang ◽  
Li Jia Liu ◽  
Da Qu

According to the principle of the experimental modal analysis, this study is based on tool system of the MIKRON UCP 710 numerical control machining center as test object for experimental modal analysis. Using the integral polynomial recognition method to identify the modal parameters (natural frequency, structural damping, and modal shape), and finally matching the results with the vector analysis method and the finite element simulation method. The results show that integral polynomial recognition method has higher precision than the vector analysis method to identify the multi-degree of freedom system; the experimental modal analysis can also obtain better modal parameters of the structure system, and a higher precision than the finite element simulation method. Obtained the MIKRON UCP 710 high-speed milling center tool system accurate modal parameters provides the necessary theoretical and experimental basis for the further study of the stability properties in the cutting processing of the high speed machining tool system.


2012 ◽  
Vol 605-607 ◽  
pp. 1253-1256
Author(s):  
Jun Zhao ◽  
Jian Chang Yuan

Centering on the chuck shaft vibration problems in high speed operation of the high-speed winder, experimental modal analysis was used to identify the modal frequency and vibration modes of the chuck shaft different cross-section in the constraint, found out the sensitive point of the response signal ,and the excitation point was found by Relationship between the modal frequency and the input excitation frequency, the results show determined dominant frequency components in the response signal can provide a reliable basis for determining the vibration characteristics of the chuck shaft, analysis of distinguishing the output response signal and selecting response signal point.


2013 ◽  
Vol 711 ◽  
pp. 363-366
Author(s):  
Li Zhang ◽  
Hong Wu

With the vibration exciter, the experimental modal analysis and vibration analysis of high-speed industrial sewing machine was carried out in this paper. The results show that the sewing machine will be of resonance at the operating speed of 4000r/min, which means the structure of the chassis of the sewing machine should be optimized.


2010 ◽  
Vol 148-149 ◽  
pp. 40-46 ◽  
Author(s):  
Chun Gen Shen ◽  
Gui Cheng Wang ◽  
Shu Lin Wang ◽  
Wen Wu Nie ◽  
Gang Liu

In this study, an integrated methodology combining computational modal analysis, experimental modal analysis, and computational dynamic analysis was developed to investigate unbalancing dynamic responses of high speed machining tool systems. A linear-elasticity formulation based on the finite element method (FEM) was employed to compute the natural frequencies and obtain the corresponding modal shapes. Experimental modal analysis was then performed to verify the natural frequencies. After the validation, the FEM model was further modified to predict the dynamic responses, with an HSK (a Germany abbreviation of Hohl Schaft Kegel) tool system as a model system. The results indicated that, by validating the computed natural frequencies with experimental ones, an effective simulation model can be established for predicting complex dynamic response of high speed machining tool systems.


Sign in / Sign up

Export Citation Format

Share Document