Engine Cylinder Pressure Measurements

1953 ◽  
Author(s):  
J.D. Mccullough
Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


2018 ◽  
Author(s):  
Jing Wu ◽  
Andres Jacoby ◽  
Daniel Llamocca ◽  
Brian Sangeorzan

2007 ◽  
Vol 40 (10) ◽  
pp. 219-226 ◽  
Author(s):  
P. Giansetti ◽  
G. Colin ◽  
Y. Chamaillard ◽  
P. Higelin

Author(s):  
Ahmed Yar ◽  
A. I. Bhatti ◽  
Qadeer Ahmed

A novel first principle based control oriented model of a gasoline engine is proposed which also carries diagnostic capabilities. Unlike existing control oriented models, the formulated model reflects dynamics of the faultless as well as faulty engine with high fidelity. In the proposed model, the torque production subsystem is obtained by integration of further two subsystems that is model of a single cylinder torque producing mechanism and an analytical gasoline engine cylinder pressure model. Model of a single cylinder torque producing mechanism is derived using constrained equation of motion (EOM) in Lagrangian mechanics. While cylinder pressure is evaluated using a closed form parametric analytical gasoline engine cylinder pressure model. Novel attributes of the proposed model include minimal usage of empirical relations and relatively wider region of model validity. Additionally, the model provides model based description of crankshaft angular speed fluctuations and tension in the rigid bodies. Capacity of the model to describe the system dynamics under fault conditions is elaborated with case study of an intermittent misfire condition. Model attains new capabilities based on the said novel attributes. The model is successfully validated against experimental data.


2014 ◽  
Vol 660 ◽  
pp. 447-451
Author(s):  
Akasyah M. Kathri ◽  
Rizalman Mamat ◽  
Amir Aziz ◽  
Azri Alias ◽  
Nik Rosli Abdullah

The diesel engine is one of the most important engines for road vehicles. The engine nowadays operates with different kinds of alternative fuels, such as natural gas and biofuel. The aim of this article is to study the combustion process that occurs in an engine cylinder of a diesel engine when using biofuel. The one-dimensional numerical analysis using GT-Power software is used to simulate the commercial four-cylinder diesel engine. The engine operated at high engine load and speed. The ethanol fuel used in the simulation is derived from the conventional ethanol fuel properties. The analysis of simulations includes the cylinder pressure, combustion temperature and rate of heat release. The simulation results show that in-cylinder pressure and temperature for ethanol is higher than for diesel at any engine speed. However, the mass fraction of ethanol burned is similar to that of diesel. MFB only affects the engine speed.


2005 ◽  
Author(s):  
Olivier Grondin ◽  
Christophe Letellier ◽  
Jean Maquet ◽  
Luis Antonio Aguirre ◽  
Frédéric Dionnet

Sign in / Sign up

Export Citation Format

Share Document