One-Dimensional Simulation of the Combustion Process in an Engine Cylinder with Ethanol

2014 ◽  
Vol 660 ◽  
pp. 447-451
Author(s):  
Akasyah M. Kathri ◽  
Rizalman Mamat ◽  
Amir Aziz ◽  
Azri Alias ◽  
Nik Rosli Abdullah

The diesel engine is one of the most important engines for road vehicles. The engine nowadays operates with different kinds of alternative fuels, such as natural gas and biofuel. The aim of this article is to study the combustion process that occurs in an engine cylinder of a diesel engine when using biofuel. The one-dimensional numerical analysis using GT-Power software is used to simulate the commercial four-cylinder diesel engine. The engine operated at high engine load and speed. The ethanol fuel used in the simulation is derived from the conventional ethanol fuel properties. The analysis of simulations includes the cylinder pressure, combustion temperature and rate of heat release. The simulation results show that in-cylinder pressure and temperature for ethanol is higher than for diesel at any engine speed. However, the mass fraction of ethanol burned is similar to that of diesel. MFB only affects the engine speed.

2014 ◽  
Vol 660 ◽  
pp. 452-456 ◽  
Author(s):  
Akasyah M. Kathri ◽  
Rizalman Mamat ◽  
Amir Aziz ◽  
Azri Alias ◽  
Nik Rosli Abdullah

Modelling the compression ignition engine mostly depends on fuel characteristics. The proses involve a model of the real system and carry out experiment as a mean of comparison to understand the behaviour of the system. The diesel engine nowadays operated with different kind of alternative fuels such as natural gas and biofuel. The aim of this article is to study the combustion characteristic occurred in an engine cylinder of a diesel engine when using biofuel. The one-dimensional numerical analysis using GT-Power software is used to simulate the diesel engine. The engine operated at full engine load and difference speed. The methanol fuel used in the simulation is derived from the conventional methanol fuel properties. The analysis of simulations includes the cylinder pressure, combustion temperature and rate of heat release. The simulation result shows that in-cylinder pressure for methanol is slightly higher than diesel fuel in any speed of the engine. It also found that the combustion characteristic on methanol temperature is higher at all crank angle degree of diesel fuel. Mass fraction burns of methanol are much lower than diesel fuel, but burns faster than diesel fuel.


2002 ◽  
Vol 3 (2) ◽  
pp. 93-101 ◽  
Author(s):  
F E Corcione ◽  
S S Merola ◽  
B M Vaglieco

In the last few years, there has been an increasing concern about the emissions of ultrafine particles in the atmosphere. A detailed study of the formation and oxidation of these particles in the environment of the diesel engine cylinder presents many experimental difficulties due to the high temperatures, pressures and extremely reactive intermediate species. To allow investigation of the different phases of the diesel combustion process, high temporal and spatial resolution optical techniques were applied in the optically accessible chamber of a diesel engine at fixed engine speed and air-fuel ratio. Simultaneous extinction, scattering and flame chemiluminescence measurements from the ultraviolet to the visible region were carried out in order to study the diesel combustion process from the soot inception to the formation of soot particles, through the growth of their precursors. These species were characterized as carbonaceous nanometric structures and their sizes were evaluated by the Mie theory.


Author(s):  
J. Shipinski ◽  
P. S. Myers ◽  
O. A. Uyehara

A spray-burning model (based on single-droplet theory) for heat release in a diesel engine is presented. Comparison of computations using this model and experimental data from an operating diesel engine indicate that heat release rates are not adequately represented by single-droplet burning rates. A new concept is proposed, i.e. a burning coefficient for a fuel spray. Comparisons between computations and experimental data indicate that the numerical value of this coefficient is nearly independent of engine speed and combustion-chamber pressure. However, the instantaneous value of the spray burning coefficient is approximately proportional to the instantaneous mass-averaged cylinder gas temperature to the one-third power.


2012 ◽  
Vol 155-156 ◽  
pp. 12-17 ◽  
Author(s):  
Lian Xu Wang ◽  
Da Wei Qu ◽  
Chang Qing Song ◽  
Ye Tian

To research the performance optimization of high speed car diesel engine,firstly according to the characteristic of car diesel engine with Variable Nozzle Turbocharger (VNT), one-dimensional cycle model of the engine was established by using simulation software BOOST and validated by experimental data in this paper. The turbine blades’ opening corresponding to different speed was determined. Therefore the problem that the VNT surges at low engine speed and the inlet air flow is insufficient at high speed was solved. Based on the above model, this paper improved the efficiency of the engine by optimizing the compression ratio and the distribution phase of camshaft and then used the experimental data to check the simulation results. Meanwhile the fuel consumption and the possibility of the engine operation roughness decreased.


2019 ◽  
Vol 112 ◽  
pp. 01014
Author(s):  
Adrian Nicolici ◽  
Constantin Pană ◽  
Niculae Negurescu ◽  
Alexandru Cernat ◽  
Cristian Nuţu

The progressive diminution of the oil reserves all over the world highlights the necessity of using alternative fuels derived from durable renewable resource. The use of the alternative fuels represents a viable solution to reduce the pollutant emissions and to replace fossil fuels. Thus, a viable solution is the use of the animal fats in mixture with the diesel fuel at the diesel engines. A D2156 MTN8 diesel engine was firstly fuelled with diesel fuel and then with different blends of diesel fuel-animal fats (5% and 10% animal fats content). In the paper are presented some results of the experimental investigations of engine fuelled with preheated animal fats. The raw animal fats effects on the combustion process and on the pollutant emissions at different engine loads and 1450 rev/min engine speed are showed. The engine cycle variability increases at the animal fats content increase. The cycle variability for maximum pressure, maximum pressure angle and indicated mean effective pressure is analysed. The cycle variability coefficients values don’t exceed the recommended values of the standard diesel engine.


Author(s):  
Zhenghu Chen ◽  
Lian Xie ◽  
Haikun Shang ◽  
Jianfeng He ◽  
Jie Zheng ◽  
...  

2018 ◽  
Vol 20 (1) ◽  
pp. 141-154 ◽  
Author(s):  
P Maniatis ◽  
U Wagner ◽  
T Koch

A manipulation of the charge exchange allows controlling the amount of residual gas during engine warm-up. The residual gas during the warm-up phase leads to an increase of the exhaust gas temperature and supports to reach the exhaust after-treatment system operating temperature faster. In addition, the warm residual gas increases the combustion chamber temperature, which reduces the HC and CO emissions. However, fuel consumption increases. For that reason, such heating measures should be the best compromise of both, exhaust gas temperature increase and engine efficiency, in order to provide efficient heating strategies for passenger car diesel engines. Therefore, simulative and experimental investigations are carried out at the Institute of Internal Combustion Engines of the Karlsruhe Institute of Technology to establish a reliable cam design methodology. For the experimental investigations, a modern research single-cylinder diesel engine was set up on a test bench. In addition, a one-dimensional simulation model of the experimental setup was created in order to simulate characteristics of valve lift curves and to investigate their effects on the exhaust gas temperature and the exhaust gas enthalpy flow. These simulations were based on design of experiments (DoE), so that all characteristics can be used sustainably for modeling and explaining their influences on the engine operation. This methodology allows numerically investigating promising configurations and deriving cam contours which are manufactured for testing. To assess the potential of these individual configurations, the results obtained were compared with each other as well as with the series configuration. Results show that the combination of DoE and one-dimensional simulation for the design of camshaft contours is well suited which was also validated with experimental results. Furthermore, the potential of residual gas retention by favorable configurations with a second event already revealed in various publications could be confirmed with respect to exhaust gas temperature increase and engine efficiency.


Sign in / Sign up

Export Citation Format

Share Document