A New Look at Oxygen Enrichment 1) The Diesel Engine

1990 ◽  
Author(s):  
Harry C. Watson ◽  
Eric E. Milkins ◽  
Geoff R. Rigby
1991 ◽  
Vol 113 (3) ◽  
pp. 365-369 ◽  
Author(s):  
R. R. Sekar ◽  
W. W. Marr ◽  
D. N. Assanis ◽  
R. L. Cole ◽  
T. J. Marciniak ◽  
...  

Use of oxygen-enriched combustion air in diesel engines can lead to significant improvements in power density, as well as reductions in particulate emissions, but at the expense of higher NOx emissions. Oxygen enrichment would also lead to lower ignition delays and the opportunity to burn lower grade fuels. Analytical and experimental studies are being conducted in parallel to establish the optimal combination of oxygen level and diesel fuel properties. In this paper, cylinder pressure data acquired on a single-cylinder engine are used to generate heat release rates for operation under various oxygen contents. These derived heat release rates are in turn used to improve the combustion correlation—and thus the prediction capability—of the simulation code. It is shown that simulated and measured cylinder pressures and other performance parameters are in good agreement. The improved simulation can provide sufficiently accurate predictions of trends and magnitudes to be useful in parametric studies assessing the effects of oxygen enrichment and water injection on diesel engine performance. Measured ignition delays, NOx emissions, and particulate emissions are also compared with previously published data. The measured ignition delays are slightly lower than previously reported. Particulate emissions measured in this series of tests are significantly lower than previously reported.


2013 ◽  
Vol 51 ◽  
pp. 43-52 ◽  
Author(s):  
Hu Li ◽  
Patrick Biller ◽  
Seyed Ali Hadavi ◽  
Gordon E. Andrews ◽  
Grzegorz Przybyla ◽  
...  

1993 ◽  
Vol 115 (4) ◽  
pp. 761-768 ◽  
Author(s):  
D. Assanis ◽  
E. Karvounis ◽  
R. Sekar ◽  
W. Marr

A heat release correlation for oxygen-enriched diesel combustion is being developed through heat release analysis of cylinder pressure data from a single-cylinder diesel engine operating under various levels of oxygen enrichment. Results show that standard combustion correlations available in the literature do not accurately describe oxygen-enriched diesel combustion. A novel functional form is therefore proposed, which is shown to reproduce measured heat release profiles closely, under different operating conditions and levels of oxygen enrichment. The mathematical complexity of the associated curve-fitting problem is maintained at the same level of difficulty as for standard correlations. When the novel correlation is incorporated into a computer simulation of diesel engine operation with oxygen enrichment, the latter predicts pressure traces in excellent agreement with measured pressure data. This demonstrates the potential of the proposed combustion simulation to guide the application of oxygen-enriched technology successfully to a variety of multicylinder diesel systems.


2002 ◽  
Author(s):  
D. K. Mather ◽  
David E. Foster ◽  
R. B. Poola ◽  
D. E. Longman ◽  
A. Chanda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document