Abrasive-Waterjet Machining of Ceramic-Coated Materials

1991 ◽  
Author(s):  
M. Hashish ◽  
J. Whalen
1993 ◽  
Vol 115 (1) ◽  
pp. 51-56 ◽  
Author(s):  
M. Hashish

In the machining of materials, abrasive-waterjets are typically applied at a 90 deg. angle to the surface of the workpiece. This paper presents results and observations on machining with abrasive-waterjets at angles other than 90 deg. Previous visualization studies of the cutting process in transparent materials have shown that there are optimal angles for maximum depth of cut and kerf depth uniformity. Here, observations on the effect of angle in machining applications such as turning, milling, linear cutting, and drilling are addressed. The effects of variations in both the impact angle and the rake angle are investigated. Results indicate that the volume removal rate is significantly affected by these angles and that the surface finish can be improved by angling the jet. However, shallow angle drilling of small holes in laminated or ceramic-coated materials requires further investigation.


2021 ◽  
Vol 11 (11) ◽  
pp. 4925
Author(s):  
Jennifer Milaor Llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abrasive water jet machining is a proficient alternative for cutting difficult-to-machine materials with complex geometries, such as austenitic stainless steel 304L (AISI304L). However, due to differences in machining responses for varied material conditions, the abrasive waterjet machining experiences challenges including kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machining is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving lower kerf taper angle and higher material removal rate. Based on experimental investigation, a trend of decreasing the level of traverse speed and material thickness that results in minimum kerf taper angle values of 0.825° for machining curvature profile and 0.916° for line profiles has been observed. In addition, higher traverse speed and material thickness achieved higher material removal rate in cutting different curvature radii and lengths in line profiles with obtained values of 769.50 mm3/min and 751.5 mm3/min, accordingly. The analysis of variance revealed that material thickness had a significant impact on kerf taper angle and material removal rate, contributing within the range of 69–91% and 62–69%, respectively. In contrast, traverse speed was the least factor measuring within the range of 5–18% for kerf taper angle and 27–36% for material removal rate.


2013 ◽  
Vol 404 ◽  
pp. 3-9 ◽  
Author(s):  
Nihat Tosun ◽  
Ihsan Dagtekin ◽  
Latif Ozler ◽  
Ahmet Deniz

Abrasive waterjet machining is one of the non-traditional methods of the recent years which found itself a wide area of application in the industry for machining of different materials. In this paper, the surface roughness of 6061-T6 and 7075-T6 aluminum alloys are being cut with abrasive waterjet is examined experimentally. The experiments were conducted with different waterjet pressures and traverse speeds. It has been found that the surface roughness obtained by cutting material with high mechanical properties is better than that of obtained by cutting material with inferior mechanical properties.


2017 ◽  
Vol 54 (2) ◽  
pp. 205-214 ◽  
Author(s):  
K. Balamurugan ◽  
M. Uthayakumar ◽  
S. Sankar ◽  
U. S. Hareesh ◽  
K. G. K. Warrier

Sign in / Sign up

Export Citation Format

Share Document