The Effect of Beam Angle in Abrasive-Waterjet Machining

1993 ◽  
Vol 115 (1) ◽  
pp. 51-56 ◽  
Author(s):  
M. Hashish

In the machining of materials, abrasive-waterjets are typically applied at a 90 deg. angle to the surface of the workpiece. This paper presents results and observations on machining with abrasive-waterjets at angles other than 90 deg. Previous visualization studies of the cutting process in transparent materials have shown that there are optimal angles for maximum depth of cut and kerf depth uniformity. Here, observations on the effect of angle in machining applications such as turning, milling, linear cutting, and drilling are addressed. The effects of variations in both the impact angle and the rake angle are investigated. Results indicate that the volume removal rate is significantly affected by these angles and that the surface finish can be improved by angling the jet. However, shallow angle drilling of small holes in laminated or ceramic-coated materials requires further investigation.

2021 ◽  
Vol 11 (11) ◽  
pp. 4925
Author(s):  
Jennifer Milaor Llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abrasive water jet machining is a proficient alternative for cutting difficult-to-machine materials with complex geometries, such as austenitic stainless steel 304L (AISI304L). However, due to differences in machining responses for varied material conditions, the abrasive waterjet machining experiences challenges including kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machining is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving lower kerf taper angle and higher material removal rate. Based on experimental investigation, a trend of decreasing the level of traverse speed and material thickness that results in minimum kerf taper angle values of 0.825° for machining curvature profile and 0.916° for line profiles has been observed. In addition, higher traverse speed and material thickness achieved higher material removal rate in cutting different curvature radii and lengths in line profiles with obtained values of 769.50 mm3/min and 751.5 mm3/min, accordingly. The analysis of variance revealed that material thickness had a significant impact on kerf taper angle and material removal rate, contributing within the range of 69–91% and 62–69%, respectively. In contrast, traverse speed was the least factor measuring within the range of 5–18% for kerf taper angle and 27–36% for material removal rate.


2019 ◽  
Vol 54 (13) ◽  
pp. 1741-1759 ◽  
Author(s):  
Dhiraj Kumar ◽  
Suhasini Gururaja

In present work, abrasive waterjet machining has been used to machine adhesively bonded titanium-carbon fiber-reinforced plastics-titanium hybrid laminate with varying traverse speed, jet pressure, and stand-off distance. The effect of varying abrasive waterjet machining parameters on cut quality has been quantified by material removal rate, metal composite interface damage factor, taper ratio ( T r), and surface roughness (Ra). Response surface methodology along with central composite design has been used to analyze the influence of process parameters on output responses. Additionally, analysis of variance was performed to identify the significant parameters on the output responses. For better abrasive waterjet cut quality, the optimal values of process parameters obtained were 200 MPa jet pressure, 237.693 mm/min traverse speed, and 1 mm stand-off distance. The corresponding material removal rate, metal composite interface damage factor, taper ratio, and surface roughness are 5.388 mm3/s, 1.41, 1.16, and 3.827 µm, respectively. Furthermore, validation tests have been performed with obtained optimal parameters that deliver satisfactory outcomes with an error of 5.35%, 3.07%, 2.29%, and 0.39% for material removal rate, metal composite interface damage factor, taper ratio, and surface roughness, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Prasad D. Unde ◽  
M. D. Gayakwad ◽  
N. G. Patil ◽  
R. S. Pawade ◽  
D. G. Thakur ◽  
...  

Abrasive waterjet machining (AWJM) is an emerging machining process in which the material removal takes place due to abrasion. A stream of abrasive particles mixed with filtered water is subjected to the work surface with high velocity. The present study is focused on the experimental research and evaluation of the abrasive waterjet machining process in order to evaluate the technological factors affecting the machining quality of CFRP laminate using response surface methodology. The standoff distance, feed rate, and jet pressure were found to affect kerf taper, delamination, material removal rate, and surface roughness. The material related parameter, orientation of fiber, has been also found to affect the machining performance. The kerf taper was found to be 0.029 for 45° fiber orientation whereas it was 0.036 and 0.038 for 60° and 90°, respectively. The material removal rate is 18.95 mm3/sec for 45° fiber orientation compared to 18.26 mm3/sec for 60° and 17.4 mm3/sec for 90° fiber orientation. The Ra value for 45° fiber orientation is 4.911 µm and for 60° and 90° fiber orientation it is 4.927 µm and 4.974 µm, respectively. Delamination factor is found to be more for 45° fiber orientation, that is, 2.238, but for 60° and 90° it is 2.029 and 2.196, respectively.


1997 ◽  
Vol 119 (4B) ◽  
pp. 776-785 ◽  
Author(s):  
R. Kovacevic ◽  
M. Hashish ◽  
R. Mohan ◽  
M. Ramulu ◽  
T. J. Kim ◽  
...  

Thermodynamic analysis of material removal mechanisms indicates that an ideal tool for shaping of materials is a high energy beam, having infinitely small cross-section, precisely controlled depth, and direction of penetration, and does not cause any detrimental effects on the generated surface. The production of the beam should be relatively inexpensive and environmentally sound while the material removal rate should be reasonably high for the process to be viable. A narrow stream of high energy water mixed with abrasive particles comes close to meeting these requirements because abrasive waterjet machining has become one of the leading manufacturing technologies in a relatively short period of time. This paper gives an overview of the basic research and development activities in the area of abrasive waterjet machining in the 1990s in the United States.


2020 ◽  
Vol 4 (1) ◽  
pp. 19
Author(s):  
(Peter) Liu ◽  
Neil Gershenfeld

Several series of experiments were conducted to compare the performance of selected sets of subtractive and additive machine tools for meso-micro machining. Under the MicroCutting Project, meso-micro machining of a reference part was conducted to compare the performance of several machine tools. A prototype flexure of the microspline of an asteroid gripper under development at NASA/JPL was selected as the reference part for the project. Several academic, research institutes, and industrial firms were among the collaborators participating in the project. Both subtractive and additive machine tools were used, including abrasive waterjets, CNC milling, lasers, 3D printing, and laser powder bed fusion. Materials included aluminum, stainless steel, and nonmetal resins. Each collaborator produced the reference part in its facility using materials most suitable for their tools. The finished parts were inspected qualitatively and quantitatively at OMAX Corporation. The performance of the participating machine tools was then compared based on the results of the inspection. Test results show that the two top performers for this test part are the CNC precision milling and micro abrasive waterjet. For machining a single flexure, the CNC precision milling had a slight edge over the micro abrasive waterjet machining in terms of part accuracy and edge quality. The advantages disappear or the trend even reverses when stack machining with taper compensation is adopted for the micro abrasive waterjet.


1995 ◽  
Vol 117 (4) ◽  
pp. 578-583 ◽  
Author(s):  
M. Hashish

The abrasive-waterjet (AWJ) machining process is a controlled erosive wear process where the abrasive cutting agents are focused in a narrow beam. The beam-material interaction process constitutes more than one mode, the most dominant of which are the cutting wear mode and the deformation wear mode. The cutting wear mode occurs at the top of the kerf due to shallow angles of impact and results in a steady-state interface. The material hardness (H) or Vicker’s hardness number is the most relevant material property to this mode of interaction. The deformation wear mode occurs below the cutting wear mode due to large angles of impact and results in an unsteady penetration process. The modulus of elasticity (E) was found to correlate well with the deformation wear material removal. A prediction model was used to express the depth of cut (h) as a function of material properties: h=A/H+B/(E+C) where A, B, and C are process constants.


Author(s):  
A Lebar ◽  
M Junkar

Abrasive waterjet (AWJ) machining is a non-conventional process. Its most striking advantage is the absence of a heat-affected zone. AWJ machining can be successfully used on a very broad spectrum of materials, regardless of their brittleness, ductility or composition. However, this machining process has the disadvantage of striations being left on the surface of the machined workpiece. Since forecasting of the results of this process is still on the empirical level, great efforts are being put into the modelling of the AWJ process. In this paper, an original model of the AWJ machining process is presented. It is based on an AWJ process unit event, which in this case represents the impact of a particular abrasive grain. The geometrical characteristics of the unit event are measured on a physical model of the AWJ process. The measured dependencies and the proposed model relations are then implemented in AWJ machining process simulation.


Author(s):  
Joseck Nyaporo Nyaboro ◽  
Mahmoud A. Ahmed ◽  
Hassan El-Hofy ◽  
Mohamed El-Hofy

Machining of hard-to-cut materials to a high degree of accuracy and surface quality is one of the most critical operations when fabricating different state-of-the-art engineered components. Abrasive waterjet machining (AWJM) is one of the non-conventional technologies, which is increasingly gaining a reputation for machining hard-to-cut materials. Despite many phenomenological investigations, the dynamic characteristics of the abrasive waterjet and physical interactions with the machined surface have not been thoroughly investigated in the context of understanding the machining process. The kerf geometry has been associated with several abrasive waterjet input parameters, but its characteristics have remained speculative among many researchers. In the present study, the governing equations of two-phase abrasive waterjet flow and the interaction with the material surface are developed and numerically simulated. With the help of precisely developed user-defined functions (UDF), the material removal process has been investigated. The dynamic jet characteristics and erosion rate are correlated to help characterize the kerf geometry. The proposed modelling approach is within the acceptable level of accuracy (< 5 %) when compared to experimental data. The results show that the jet dynamic characteristics and abrasive particle size significantly affect the kerf geometry and the material removal rate. The present findings not only provide a technical understanding of the AWJM process but also provide requisite guidelines in achieving high-precision machining of hard-to-cut materials.


Sign in / Sign up

Export Citation Format

Share Document