Snap-Acceleration Smoke Test Procedure for Heavy-Duty Diesel Powered Vehicles

2018 ◽  
Author(s):  
Author(s):  
J Nuszkowski ◽  
R R Tincher ◽  
G J Thompson

The exhaust emissions from heavy-duty diesel engines (HDDEs) contribute to the degradation of ambient air quality; therefore, environmental agencies have created stringent emissions standards. Since the implementation of these standards, overall engine and fuel technology improvements have created a significant reduction in emissions. This study was completed in order to evaluate oxides of nitrogen (NO x) emissions from fuels with and without cetane-improving additives in recent and early production electronically controlled HDDEs. Five engines spanning the model years from 1991 to 2004 were tested using the Federal Test Procedure (FTP) dynamometer cycle with both petroleum-based diesel and B20 as the neat fuel. It was found that the additives had the most impact on reducing emissions at low engine powers, but the engine power range with an NO x benefit varied between engines. The cetane improvers were found only to reduce NO x below a cylinder gas density of 35kg/m3 at top dead centre. The lower compression ratio of the 1992 DDC S60 engines reduced the cylinder gas density and provided a larger optimal operating range for the cetane improvers. The cetane improvers reduced NO x at low engine powers and cylinder gas density for the B20 fuel but were less effective than for the neat petroleum fuels.


Author(s):  
W. Stuart Neill ◽  
Wallace L. Chippior ◽  
Ken Mitchell ◽  
Craig Faibridge ◽  
Rene´ Pigeon ◽  
...  

The exhaust emissions form a single-cylinder version of a heavy-duty diesel engine with exhaust gas recirculation (EGR) were measured with eight high-cetane components blended into an ultra-low sulphur diesel base fuel. the blending components evaluated were conventional nitrate and peroxide cetane improver additives, paraffins from two sources, three ethers, and soy methyl ester. The blending components were used to increase the cetane number of a base fuel by ten numbers, from 44 to 54. Exhaust emissions were measured using the AVL eight-mode steady-state test procedure. PM and NOx emissions from the engine were fairly insensitive to ignition quality improvement by nitrate and peroxide cetane improvers. Soy methyl ester and two of the ethers, 1,4 diethoxybutane and 2-ethoxyethyl ether, significantly reduced PM emissions, but increased ONx emissions. The two paraffinic blending components reduced both PM and NOx emissions.


Author(s):  
G. J. Thompson ◽  
C. M. Atkinson ◽  
N. N. Clark ◽  
T. W. Long ◽  
E Hanzevack

Internal combustion engines are being required to comply with increasingly stringent government exhaust emissions regulations. Compression ignition (CI) piston engines will continue to be used in cost-sensitive fuel applications such as in heavy-duty buses and trucks, power generation, locomotives and off-highway applications, and will find application in hybrid electric vehicles. Close control of combustion in these engines will be essential to achieve ever-increasing efficiency improvements while meeting increasingly stringent emissions standards. The engines of the future will require significantly more complex control than existing map-based control strategies, having many more degrees of freedom than those of today. Neural network (NN)-based engine modelling offers the potential for a multidimensional, adaptive, learning control system that does not require knowledge of the governing equations for engine performance or the combustion kinetics of emissions formation that a conventional map-based engine model requires. The application of a neural network to model the output torque and exhaust emissions from a modern heavy-duty diesel engine (Navistar T444E) is shown to be able to predict the continuous torque and exhaust emissions from a heavy-duty diesel engine for the Federal heavy-duty engine transient test procedure (FTP) cycle and two random cycles to within 5 per cent of their measured values after only 100 min of transient dynamometer training. Applications of such a neural net model include emissions virtual sensing, on-board diagnostics (OBD) and engine control strategy optimization.


Author(s):  
W. S. Neill ◽  
W. L. Chippior ◽  
Ö. L. Gülder

Abstract The influence of fuel aromatic content and type on the exhaust emissions from a heavy-duty diesel engine were investigated by blending predetermined amounts of aromatic compounds with a known chemical structure into a low-aromatic base fuel. Seven test fuels were blended with constant cetane numbers and densities, but with mono-, di-, and tri-aromatic contents ranging from 10 to 30%, 0 to 10%, and 0 to 8%, respectively. The engine experiments were run using the AVL eight-mode steady-state simulation of the EPA transient test procedure. The results show that fuel total aromatic content or type did not significantly affect the engine’s PM emissions. NOx emissions, however, increased by 4.3% as the fuel mono-aromatic content increased from 10 to 30%.


Sign in / Sign up

Export Citation Format

Share Document