Design and Performance Optimization of Off-highway Diesel Engine with Mechanical Fuel Injection Equipment for TIER-IV Emission Norms

Author(s):  
K. Subramanian ◽  
A. Kandaswamy ◽  
S. Mhahadevan

The two cylinder diesel engines are most demanding product in Indian market for power genset and tractor applications. But major task faced by engine manufacturers all over the world is to upgrade running engine designs with minimum and cost-effective modifications to meet the next level of emission norms. This saves the precious lead time and investments. In addition uncomplicated design has to be sustained as far as possible while improving emissions. Further the basic desires of the end user in off-road market are good response, transient performance, better low end torque, best fuel efficiency and smooth operation of the engine besides best in class reliability. Additional requirements needed to sustain the market with higher power to weight ratio and increased life of the engine. Henceforth turbocharging applications for off-road diesel engines are promising solution for enhancing rated power, low speed torque, transient performance, optimized fuel efficiency and engine downsizing. A trade-off is required to match some incompatible design issues like overall dimensions, cost, emissions control and performance in order to sustain the existing design. Future diesel engine emission standards will restrict vehicle emissions, particularly nitrogen oxides. In the present work, performance improvement for 1.7L, 2 cylinder in-line naturally aspirated diesel engine with mechanical fuel injection pump for off-road application is developed to contain all needs of the market. Design up-gradation of this engine for Tier IV is made with minimal design changes by optimal combinations of fuel injection equipment. This includes proper optimization of performance with improvements in nozzle geometry, change in injector end pressure. But due to the increased fuel flow rates for improving the engine performance as well as emission reduction, there is also a requirement for increased air flow. Henceforth in this study air flow rate is simulated and discussed for selection of turbocharger and intercooler. Further elaborate design and analysis study is also done on cooled exhaust gas recirculation system for exhaust gas cooling efficiency, Diesel Oxidation catalyst, Selective Catalytic Reduction /Lean NOx Trap substrate selection for reduced pressure drop and maximum retention time for exhaust gas to achieve Tier IV norms in turbocharged intercooled two cylinder engine.

Author(s):  
Fengjun Yan ◽  
Junmin Wang

Fueling control in Diesel engines is not only of significance to the combustion process in one particular cycle, but also influences the subsequent dynamics of air-path loop and combustion events, particularly when exhaust gas recirculation (EGR) is employed. To better reveal such inherently interactive relations, this paper presents a physics-based, control-oriented model describing the dynamics of the intake conditions with fuel injection profile being its input for Diesel engines equipped with EGR and turbocharging systems. The effectiveness of this model is validated by comparing the predictive results with those produced by a high-fidelity 1-D computational GT-Power engine model.


Author(s):  
Tomi R. Krogerus ◽  
Mika P. Hyvönen ◽  
Kalevi J. Huhtala

Diesel engines are widely used due to their high reliability, high thermal efficiency, fuel availability, and low consumption. They are used to generate power, e.g., in passenger cars, ships, power plants, marine offshore platforms, and mining and construction machines. The engine is at heart of these applications, so keeping it in good working condition is vital. Recent technical and computational advances and environmental legislation have stimulated the development of more efficient and robust techniques for the diagnostics of diesel engines. The emphasis is on the diagnostics of faults under development and the causes of engine failure or reduced efficiency. Diesel engine fuel injection plays an important role in the development of the combustion in the engine cylinder. Arguably, the most influential component of the diesel engine is the fuel injection equipment; even minor faults can cause a major loss of efficiency of the combustion and an increase in engine emissions and noise. With increased sophistication (e.g., higher injection pressures) being required to meet continuously improving noise, exhaust smoke, and gaseous emission regulations, fuel injection equipment is becoming even more susceptible to failure. The injection systems have been shown to be the largest contributing factor in diesel engine failures. Extracting the health information of components in the fuel injection system is a very demanding task. Besides the very time-consuming nature of experimental investigations, direct measurements are also limited to selected observation points. Diesel engine faults normally do not occur in a short timeframe. The modeling of typical engine faults, particularly combustion related faults, in a controlled manner is thus vital for the development of diesel engine diagnostics and fault detection. Simulation models based on physical grounds can enlarge the number of studied variables and also obtain a better understanding of localized phenomena that affect the overall behavior of the system. This paper presents a survey of the analysis, modeling, and diagnostics of diesel fuel injection systems. Typical diesel fuel injection systems and their common faults are presented. The most relevant state of the art research articles on analysis and modeling of fluid injection systems as well as diagnostics techniques and measured signals describing the behavior of the system are reviewed and the results and findings are discussed. The increasing demand and effect of legislation related to diagnostics, especially on-board diagnostics (OBD), are discussed with reference to the future progress of this field.


Author(s):  
Anup M. Kulkarni ◽  
Karla C. Stricker ◽  
Angeline Blum ◽  
Gregory M. Shaver

Premixed charge compression ignition (PCCI), an advanced mode combustion strategy, promises to simultaneously deliver the fuel efficiency of diesel combustion and the ultralow NOx emissions that usually require advanced exhaust aftertreatment. A flexible, computationally efficient, and whole engine simulation model for a 2007 6.7 l diesel engine with exhaust gas recirculation (EGR), variable geometry turbocharging (VGT), and common rail fuel injection was validated after extensive experimentation. This model was used to develop strategies for highly fuel-efficient and ultralow NOx emission PCCI. The primary aim of this modeling investigation is to determine the PCCI control authority present on a modern diesel engine outfitted with both conventional actuators (multipulse fuel injectors, EGR valve, and VGT) and flexible intake valve closure modulation, which dictates the effective compression ratio. The results indicate that early fuel injection coupled with ECR reduction and modest amounts of EGR yield a well-timed PCCI exhibiting 70%+ reductions in NOx with no fuel consumption penalty over a significant portion of the engine operating range.


Author(s):  
P E Glikin

In his address the Automobile Division Chairman develops the theme that fuel injection equipment is the heart of the diesel engine. He explains the task that the fuel injection equipment has to carry out and how this has been solved in the past. He describes some present-day systems and sets out the problems in optimizing the injection characteristics. Finally he points to future trends in this field and outlines some recent developments in electronic control of fuel injection.


Author(s):  
Pavlo Chishkala ◽  
Denis Meshkov ◽  
Oduard Bozhko

The analysis of diagnostic methods of diesel engines is given. The principle of diagnostics by certain methods, parameters, by which the diagnostics of fuel injection equipment is conducted, as well as disadvantages of one or another method are considered. The main causes of derangements in the nodes of the fuel injection equipment of diesel engines are determined. The examples have proved that the direct diagnostics methods are the most effective in determining correlation dependencies, for example, indicating the workflow in a diesel cylinder. It is particularly established that the methods of technical diagnostics do not require dismantling of the fuel injection equipment and have proven themselves to be versatile and operative, allowing to comprehensively evaluate the condition of the diesel. The methods of non-separable diagnostic of the condition of a diesel engine are described in detail, the features of such indirect diagnostic methods as vibration, acoustic, indirect indicating by determining the voltage in the cylinder head studs, estimation of the wear rate of component parts with a metal content in engine oil, as well as diagnosing with uneven rate speed of the crankshaft. The vibro-acoustic diagnostic method of a diesel engine can be used to determine the technical condition of such elements as a diesel fuel injection pump , nozzles, and a fuel-priming pump. In addition, the characteristics of motor testers, highly specialized testers and auto scanners are given. A diagnostic feature using a computer auto scanner is that it allows evaluating the condition of nodes in a comprehensive manner, that is, taking into account the mutual influence of derangements on each other. It is noted that the methods that do not require disassembling can be considered the most effective, and the most accurate assessment of the technical condition of the diesel fuel system can be given using the diagnostic method according to the parameters of work processes.


Author(s):  
V.A. Markov ◽  
V.V. Furman ◽  
S.V. Plakhov

A topical problem of improving the fuel supply process in locomotive diesel engines in considered in this article. An ESUVT.01 type electronic control system developed by OOO PPP Dizelavtomatika (Saratov) for a D50 (6 ChN 31.8/33) locomotive diesel engine manufactured by Penzadizelmash is presented. It is shown that fuel efficiency and exhaust gas toxicity indicators can be significantly improved by optimizing the initial fuel supply phase, that is the injection advance angle. Experimental studies are conducted to assess the influence of this angle on the locomotive engine characteristics. Bench tests were carried out on a 1-PDG4D diesel generator consisting of the above-mentioned diesel engine and a traction generator MPT-84/39. As the result of the tests, dependencies of the diesel characteristics on the injection advance angle are obtained, and the need to optimize the injection advance angle according to the diesel operation mode is confirmed. Optimized values of the injection advance angle in the diesel characteristics modes are obtained. Fuel efficiency and exhaust gas toxicity indicators are determined at the optimized injection advance angle.


Sign in / Sign up

Export Citation Format

Share Document