scholarly journals Three-dimensional Attenuation Structure beneath the Tokai Region, Central Japan Derived Using Local Earthquake Spectra

2012 ◽  
Vol 65 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Hiroyuki TAKAOKA ◽  
Noriko TSUMURA ◽  
Fukusuke TAKAHASHI ◽  
Kenji NOZAKI ◽  
Aitaro KATO ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Naoya Takahashi ◽  
Shinji Toda

AbstractExamining the regularity in slip over seismic cycles leads to an understanding of earthquake recurrence and provides the basis for probabilistic seismic hazard assessment. Systematic analysis of three-dimensional paleoseismic trenches and analysis of offset markers along faults reveal slip history. Flights of displaced terraces have also been used to study slips of paleoearthquakes when the number of earthquakes contributing to the observed displacement of a terrace is known. This study presents a Monte Carlo-based approach to estimating slip variability using displaced terraces when a detailed paleoseismic record is not available. First, we mapped fluvial terraces across the Kamishiro fault, which is an intra-plate reverse fault in central Japan, and systematically measured the cumulative dip slip of the mapped terraces. By combining these measurements with the age of the paleoearthquakes, we estimated the amount of dip slip for the penultimate event (PE) and antepenultimate event (APE) to be 1.6 and 3.4 m, respectively. The APE slip was nearly three times larger than the most recent event of 2014 (Mw 6.2): 1.2 m. This suggests that the rupture length of the APE was much longer than that of the 2014 event and the entire Kamishiro fault ruptured with adjacent faults during the APE. Thereafter, we performed the Monte Carlo simulations to explore the possible range of the coefficient of variation for slip per event (COVs). The simulation considered all the possible rupture histories in terms of the number of events and their slip amounts. The resulting COVs typically ranged between 0.3 and 0.54, indicating a large variation in the slip per event of the Kamishiro fault during the last few thousand years. To test the accuracy of our approach, we performed the same simulation to a fault whose slip per event was well constrained. The result showed that the error in the COVs estimate was less than 0.15 in 86% of realizations, which was comparable to the uncertainty in COVs derived from a paleoseismic trenching. Based on the accuracy test, we conclude that the Monte Carlo-based approach should help assess the regularity of earthquakes using an incomplete paleoseismic record.


Author(s):  
S. M. Ariful Islam ◽  
Christine A. Powell ◽  
Martin C. Chapman

Abstract Three-dimensional P- and S-wave velocity (VP and VS) models are determined for the crust containing the main aftershock cluster of the 2011 Mineral, Virginia, earthquake using local earthquake tomography. The inversion uses a total of 5125 arrivals (2465 P- and 2660 S-wave arrivals) for 324 aftershocks recorded by 12 stations. The inversion volume (22 × 20 × 16 km) is completely contained within the Piedmont Chopawamsic metavolcanic terrane. The models are well resolved in the central portion of the inversion volume in the depth range 1–5 km; good resolution does not extend to the hypocenter depth of the mainshock. Most aftershocks are located within a northeast-trending, southeast-dipping region containing negative VP anomalies, positive VS anomalies, and VP/VS ratios as low as 1.53. These velocity results strongly argue for the presence of quartz-rich rocks, which we attribute to either the presence of a giant quartz vein system or metamorphosed orthoquarzite sandstones originally deposited on the Laurentian passive margin and subsequently incorporated into the Chopawamsic thrust sheets during island arc collision in the Taconic orogeny.


2019 ◽  
Vol 23 (3) ◽  
pp. 209-223 ◽  
Author(s):  
Caglar Ozer ◽  
Mehmet Ozyazicioglu

Erzurum and its surroundings are one of the seismically active and hydrothermal areas in the Eastern part of Turkey. This study is the first approach to characterize the crust by seismic features by using the local earthquake tomography method. The earthquake source location and the three dimensional seismic velocity structures are solved simultaneously by an iterative tomographic algorithm, LOTOS-12. Data from a combined permanent network comprising comprises of 59 seismometers which was installed by Ataturk University-Earthquake Research Center and Earthquake Department of the Disaster and Emergency Management Authority  to monitor the seismic activity in the Eastern Anatolia, In this paper, three-dimensional Vp and Vp/Vs characteristics of Erzurum geothermal area were investigated down to 30 km by using 1685 well-located earthquakes with 29.894 arrival times, consisting of 17.298 P- wave and 12.596 S- wave arrivals. We develop new high-resolution depth-cross sections through Erzurum and its surroundings to provide the subsurface geological structure of seismogenic layers and geothermal areas. We applied various size horizontal and vertical checkerboard resolution tests to determine the quality of our inversion process. The basin models are traceable down to 3 km depth, in terms of P-wave velocity models. The higher P-wave velocity areas in surface layers are related to the metamorphic and magmatic compact materials. We report that the low Vp and high Vp/Vs values are observed in Yedisu, Kaynarpinar, Askale, Cimenozu, Kaplica, Ovacik, Yigitler, E part of Icmeler, Koprukoy, Uzunahmet, Budakli, Soylemez, Koprukoy, Gunduzu, Karayazi, Icmesu, E part of Horasan and Kaynak regions indicated geothermal reservoir.


Sign in / Sign up

Export Citation Format

Share Document