Velocity Models for the Crust Hosting the Main Aftershock Cluster of the 2011 Mineral, Virginia, Earthquake

Author(s):  
S. M. Ariful Islam ◽  
Christine A. Powell ◽  
Martin C. Chapman

Abstract Three-dimensional P- and S-wave velocity (VP and VS) models are determined for the crust containing the main aftershock cluster of the 2011 Mineral, Virginia, earthquake using local earthquake tomography. The inversion uses a total of 5125 arrivals (2465 P- and 2660 S-wave arrivals) for 324 aftershocks recorded by 12 stations. The inversion volume (22 × 20 × 16 km) is completely contained within the Piedmont Chopawamsic metavolcanic terrane. The models are well resolved in the central portion of the inversion volume in the depth range 1–5 km; good resolution does not extend to the hypocenter depth of the mainshock. Most aftershocks are located within a northeast-trending, southeast-dipping region containing negative VP anomalies, positive VS anomalies, and VP/VS ratios as low as 1.53. These velocity results strongly argue for the presence of quartz-rich rocks, which we attribute to either the presence of a giant quartz vein system or metamorphosed orthoquarzite sandstones originally deposited on the Laurentian passive margin and subsequently incorporated into the Chopawamsic thrust sheets during island arc collision in the Taconic orogeny.

2019 ◽  
Vol 23 (3) ◽  
pp. 209-223 ◽  
Author(s):  
Caglar Ozer ◽  
Mehmet Ozyazicioglu

Erzurum and its surroundings are one of the seismically active and hydrothermal areas in the Eastern part of Turkey. This study is the first approach to characterize the crust by seismic features by using the local earthquake tomography method. The earthquake source location and the three dimensional seismic velocity structures are solved simultaneously by an iterative tomographic algorithm, LOTOS-12. Data from a combined permanent network comprising comprises of 59 seismometers which was installed by Ataturk University-Earthquake Research Center and Earthquake Department of the Disaster and Emergency Management Authority  to monitor the seismic activity in the Eastern Anatolia, In this paper, three-dimensional Vp and Vp/Vs characteristics of Erzurum geothermal area were investigated down to 30 km by using 1685 well-located earthquakes with 29.894 arrival times, consisting of 17.298 P- wave and 12.596 S- wave arrivals. We develop new high-resolution depth-cross sections through Erzurum and its surroundings to provide the subsurface geological structure of seismogenic layers and geothermal areas. We applied various size horizontal and vertical checkerboard resolution tests to determine the quality of our inversion process. The basin models are traceable down to 3 km depth, in terms of P-wave velocity models. The higher P-wave velocity areas in surface layers are related to the metamorphic and magmatic compact materials. We report that the low Vp and high Vp/Vs values are observed in Yedisu, Kaynarpinar, Askale, Cimenozu, Kaplica, Ovacik, Yigitler, E part of Icmeler, Koprukoy, Uzunahmet, Budakli, Soylemez, Koprukoy, Gunduzu, Karayazi, Icmesu, E part of Horasan and Kaynak regions indicated geothermal reservoir.


Author(s):  
Mungunsuren Dashdondog ◽  
Odonbaatar Chimed ◽  
Anne Meltzer ◽  
Nomin-Erdene Erdenetsogt ◽  
Josh Stachnik

One dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers. The location accuracy of an earthquake strongly depends on the velocity model used to compute the location. In the past, the local velocity model developed for the Hangay region was lacking precision due to insufficient data. Within the framework of the “Intracontinental Deformation and Surface Uplift- Geodynamic Evolution of the Hangay Dome, Mongolia, Central Asia” project [15], 72 seismic Broadband stations network were deployed in the Hangay Dome. This gives us an opportunity to estimate the crustal velocity structure of the South Hangay region using recorded local earthquake data. For this purpose, available velocity models for the South Hangay region have been re-evaluated.  By simultaneous invertion P- and S-wave arrival times using VELEST algorithm, we estimated minimum 1D velocity models, station corrections, hypocentre locations, and origin times for the south Hangay region. Consequently, 1D crustal velocity model is proposed for the South Hangay region. This new model is expected to improve the accuracy of the routine hypocenter determination and as initial reference models for seismic tomography study.


Author(s):  
Fumiaki Nagashima ◽  
Hiroshi Kawase

Summary P-wave velocity (Vp) is an important parameter for constructing seismic velocity models of the subsurface structures by using microtremors and earthquake ground motions or any other geophysical exploration data. In order to reflect the ground survey information in Japan to the Vp structure, we investigated the relationships among Vs, Vp, and depth by using PS-logging data at all K-NET and KiK-net sites. Vp values are concentrated at around 500 m/s and 1,500 m/s when Vs is lower than 1,000 m/s, where these concentrated areas show two distinctive characteristics of unsaturated and saturated soil, respectively. Many Vp values in the layer shallower than 4 m are around 500 m/s, which suggests the dominance of unsaturated soil, while many Vp values in the layer deeper than 4 m are larger than 1,500 m/s, which suggests the dominance of saturated soil there. We also investigated those relationships for different soil types at K-NET sites. Although each soil type has its own depth range, all soil types show similar relationships among Vs, Vp, and depth. Then, considering the depth profile of Vp, we divided the dataset into two by the depth, which is shallower or deeper than 4 m, and calculated the geometrical mean of Vp and the geometrical standard deviation in every Vs bins of 200 m/s. Finally, we obtained the regression curves for the average and standard deviation of Vp estimated from Vs to get the Vp conversion functions from Vs, which can be applied to a wide Vs range. We also obtained the regression curves for two datasets with Vp lower and higher than 1,200 m/s. These regression curves can be applied when the groundwater level is known. In addition, we obtained the regression curves for density from Vs or Vp. An example of the application for those relationships in the velocity inversion is shown.


2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Haiou Li ◽  
Xiwei Xu ◽  
Wentao Ma ◽  
Ronghua Xie ◽  
Jingli Yuan ◽  
...  

Three-dimensional P wave velocity models under the Zipingpu reservoir in Longmenshan fault zone are obtained with a resolution of 2 km in the horizontal direction and 1 km in depth. We used a total of 8589 P wave arrival times from 1014 local earthquakes recorded by both the Zipingpu reservoir network and temporary stations deployed in the area. The 3-D velocity images at shallow depth show the low-velocity regions have strong correlation with the surface trace of the Zipingpu reservoir. According to the extension of those low-velocity regions, the infiltration depth directly from the Zipingpu reservoir itself is limited to 3.5 km depth, while the infiltration depth downwards along the Beichuan-Yingxiu fault in the study area is about 5.5 km depth. Results show the low-velocity region in the east part of the study area is related to the Proterozoic sedimentary rocks. The Guanxian-Anxian fault is well delineated by obvious velocity contrast and may mark the border between the Tibetan Plateau in the west and the Sichuan basin in the east.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S569-S577 ◽  
Author(s):  
Yang Zhao ◽  
Houzhu Zhang ◽  
Jidong Yang ◽  
Tong Fei

Using the two-way elastic-wave equation, elastic reverse time migration (ERTM) is superior to acoustic RTM because ERTM can handle mode conversions and S-wave propagations in complex realistic subsurface. However, ERTM results may not only contain classical backscattering noises, but they may also suffer from false images associated with primary P- and S-wave reflections along their nonphysical paths. These false images are produced by specific wave paths in migration velocity models in the presence of sharp interfaces or strong velocity contrasts. We have addressed these issues explicitly by introducing a primary noise removal strategy into ERTM, in which the up- and downgoing waves are efficiently separated from the pure-mode vector P- and S-wavefields during source- and receiver-side wavefield extrapolation. Specifically, we investigate a new method of vector wavefield decomposition, which allows us to produce the same phases and amplitudes for the separated P- and S-wavefields as those of the input elastic wavefields. A complex function involved with the Hilbert transform is used in up- and downgoing wavefield decomposition. Our approach is cost effective and avoids the large storage of wavefield snapshots that is required by the conventional wavefield separation technique. A modified dot-product imaging condition is proposed to produce multicomponent PP-, PS-, SP-, and SS-images. We apply our imaging condition to two synthetic models, and we demonstrate the improvement on the image quality of ERTM.


2019 ◽  
Vol 23 (2) ◽  
pp. 147-155
Author(s):  
Vishwa Joshi

The physiographic features of Gujarat state of western India are unique, as they behaved dynamically with several alterations and modifications throughout the geological timescale. It displays a remarkable example of a terrain bestowed with geological, physiographical and climatic diversities. The massive 2001 Bhuj earthquake (M 7.7) over the Kachchh region caused severe damage and devastation to the state of Gujarat and attracted the scientific community of the world to comprehend on its structure and tectonics for future hazard reduction. In the present study, three clusters of wave paths A, B1, and B2 have considered. In each cluster, dispersion data were measured station by station which collectively formed a dispersion data file for a nonlinear inversion through Genetic algorithm. In this way, three crustal velocity models were generated for entire Gujarat. These models are 1) Across Cambay Basin (Path A), 2) Along Saurashtra - Kathiawar Horst (Path B1) and 3) Along Narmada Basin (Path B2), which were formed at different times during the Mesozoic. The average thickness of the crust estimated in the present study for paths A, B1 and B2 are 38.2 km, 36.2 km, and 41.6 km respectively and the estimated S-wave velocity in the lower crust is ~ 3.9 km/s for all the paths. The present study will improve our knowledge about the structure of the seismogenic layer of this active intraplate region 


2017 ◽  
Vol 122 (8) ◽  
pp. 6703-6720 ◽  
Author(s):  
Xingchen Wang ◽  
Yonghua Li ◽  
Zhifeng Ding ◽  
Lupei Zhu ◽  
Chunyong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document