scholarly journals Weighted in time energy estimates for parabolic equations with applications to non-linear and non-local problems

2012 ◽  
Vol 9 (4) ◽  
pp. 369-381
Author(s):  
Nikolai Dokuchaev
2019 ◽  
pp. 1-11
Author(s):  
Lucio Crivellari

In this paper, the second and the last of the series, we present a sequential algorithm to solve the stellar atmosphere problem that may serve as a paradigm for the solution of more general non-linear and non-local problems. The Iteration Factors (IF) Method is applied to achieve a solution of the radiative transfer equations, consistent with the radiative equilibrium constraint.


1984 ◽  
Vol 93 ◽  
pp. 109-131 ◽  
Author(s):  
J. Chabrowski

The main purposes of this paper are to investigate the existence and the uniqueness of a non-local problem for a linear parabolic equationin a cylinder D = Ω × (0, T].


Author(s):  
A.I. Kozhanov ◽  
◽  
A.V. Dyuzheva ◽  
◽  

The aim of this paper is to study the solvability of solutions of non-local problems with integral conditions in spatial variables for high-order linear parabolic equations in the classes of regular solutions (which have all the squared derivatives generalized by S. L. Sobolev that are included in the corresponding equation) . Previously, similar problems were studied for high-order parabolic equations, either in the one-dimensional case, or when certain conditions of smallness on the coefficients are met equations. In this paper, we present new results on the solvability of non-local problems with integral spatial variables for high-order parabolic equations a) in the multidimensional case with respect to spatial variables; b) in the absence of smallness conditions. The research method is based on the transition from a problem with non-local integral conditions to a problem with classical homogeneous conditions of the first or second kind on the side boundary for a loaded integro-differential equation. At the end of the paper, some generalizations of the obtained results will be described.


2021 ◽  
Vol 13 (3) ◽  
pp. 44-56
Author(s):  
Bozor Islomovich Islomov ◽  
Obidjon Khayrullaevich Abdullaev

Author(s):  
Vincent Kather ◽  
Finn Lückoff ◽  
Christian O. Paschereit ◽  
Kilian Oberleithner

The generation and turbulent transport of temporal equivalence ratio fluctuations in a swirl combustor are experimentally investigated and compared to a one-dimensional transport model. These fluctuations are generated by acoustic perturbations at the fuel injector and play a crucial role in the feedback loop leading to thermoacoustic instabilities. The focus of this investigation lies on the interplay between fuel fluctuations and coherent vortical structures that are both affected by the acoustic forcing. To this end, optical diagnostics are applied inside the mixing duct and in the combustion chamber, housing a turbulent swirl flame. The flame was acoustically perturbed to obtain phase-averaged spatially resolved flow and equivalence ratio fluctuations, which allow the determination of flux-based local and global mixing transfer functions. Measurements show that the mode-conversion model that predicts the generation of equivalence ratio fluctuations at the injector holds for linear acoustic forcing amplitudes, but it fails for non-linear amplitudes. The global (radially integrated) transport of fuel fluctuations from the injector to the flame is reasonably well approximated by a one-dimensional transport model with an effective diffusivity that accounts for turbulent diffusion and dispersion. This approach however, fails to recover critical details of the mixing transfer function, which is caused by non-local interaction of flow and fuel fluctuations. This effect becomes even more pronounced for non-linear forcing amplitudes where strong coherent fluctuations induce a non-trivial frequency dependence of the mixing process. The mechanisms resolved in this study suggest that non-local interference of fuel fluctuations and coherent flow fluctuations is significant for the transport of global equivalence ratio fluctuations at linear acoustic amplitudes and crucial for non-linear amplitudes. To improve future predictions and facilitate a satisfactory modelling, a non-local, two-dimensional approach is necessary.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Hannes Malcha ◽  
Hermann Nicolai

Abstract Supersymmetric Yang-Mills theories can be characterized by a non-local and non-linear transformation of the bosonic fields (Nicolai map) mapping the interacting functional measure to that of a free theory, such that the Jacobi determinant of the transformation equals the product of the fermionic determinants obtained by integrating out the gauginos and ghosts at least on the gauge hypersurface. While this transformation has been known so far only for the Landau gauge and to third order in the Yang-Mills coupling, we here extend the construction to a large class of (possibly non-linear and non-local) gauges, and exhibit the conditions for all statements to remain valid off the gauge hypersurface. Finally, we present explicit results to second order in the axial gauge and to fourth order in the Landau gauge.


Sign in / Sign up

Export Citation Format

Share Document