scholarly journals Synthesis and Lubricant Properties of Nitrogen doped Amorphous Carbon (a-C:N) Thin Films by Closed-field unbalanced Magnetron Sputtering Method

2021 ◽  
Vol 16 (6) ◽  
pp. 905-910
Author(s):  
Yong Seob Park ◽  
Young-Baek Kim ◽  
Sung Hwan Hwang ◽  
Jaehyeong Lee

Generally, hydrogenated amorphous carbon (a-C:H) has been shown to have a low friction coefficient, high hardness, and low abrasive wear rate. In this study, Pd doped hydrogenated amorphous carbon (a-C:H:Pd) fabricated by the closed-field unbalanced magnetron sputtering (CFUBMS) system with two targets of carbon and palladium in Ar/C2H2 plasma. The tribological and lubricant characteristics for a-C:H:Pd fabricated with various DC bias voltage from 0 to −200 V were investigated. We obtained a hardness up to 27.5 GPa and friction coefficient lower than 0.1. The atomic percentage of Pd related to the lubricant properties increased up to 22% at −200 V. In the results, the Pd doping in the a-C:H films improved the tribological and lubricant properties. The friction coefficient value of a-C:H:Pd films was decreased, the hardness and elastic modulus were increased, and also the adhesion properties was improved with the increase of negative DC bias voltage.


2007 ◽  
Vol 201 (9-11) ◽  
pp. 5547-5551 ◽  
Author(s):  
Youn J. Kim ◽  
Ho Y. Lee ◽  
Yong M. Kim ◽  
Kyung S. Shin ◽  
Woo S. Jung ◽  
...  

2007 ◽  
Vol 561-565 ◽  
pp. 1177-1180 ◽  
Author(s):  
Jian Liang Lin ◽  
Brajendra Mishra ◽  
Malki Pinkas ◽  
John J. Moore

TiC/a:C nanocomposite thin film has proven to be a worthy material selection as a thin film for tribological applications due to its low coefficient of friction, good wear resistance and high hardness. In the current study TiC/a:C thin films with carbon concentration near 55-62 at % were deposited via pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) in pure argon atmosphere with different substrate bias voltages and onto 440C stainless steel substrate with different substrate roughness. It was found that the TiC/a:C film hardness and elastic modulus were increased from 18.5 GPa to 33.8 GPa by increasing the substrate bias from floating to -150 V. However higher substrate bias can also decrease the film tibological properties. The substrate roughness has a strong effect on TiC/a:C film wear behavior. When the Ra (Mean surface roughness values) is less than 110 nm, the COF values are in low range (0.18-0.28). Further increase the Ra value to above 300 nm will result in a higher COF (>0.33). Films deposited on higher surface roughness substrate need longer time to reach the sliding equilibrium state.


Sign in / Sign up

Export Citation Format

Share Document