scholarly journals Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells

2009 ◽  
Vol 10 (3) ◽  
pp. 75-79 ◽  
Author(s):  
Min-Sung Jeon ◽  
Koichi Kamisako
2011 ◽  
Vol 221 ◽  
pp. 189-193
Author(s):  
Ying Ge Li ◽  
Dong Xing Du

Aiming for potential application in flexible solar cells, electronic transport properties are studied for hydrogenated amorphous silicon thin films on plastic substrates. Intrinsic hydrogenated amorphous silicon layers are deposited on Kapton and Upilex-s polyimide substrates at temperatures of 100°C and 180°C by plasma enhanced chemical vapor deposition (PECVD) system. Layers on 75μm and 125 thick Kapton and on 125 Upilex-s substrates are characterized by dark conductivity and activation energy measurements. It can be concluded that the intrinsic layer on 125μm thick Kapton and Upilex-s plastic both have favorable electrical properties and therefore could be employed as substrate material for flexible solar cells.


2011 ◽  
Vol 383-390 ◽  
pp. 6980-6985
Author(s):  
Mao Yang Wu ◽  
Wei Li ◽  
Jun Wei Fu ◽  
Yi Jiao Qiu ◽  
Ya Dong Jiang

Hydrogenated amorphous silicon (a-Si:H) thin films doped with both Phosphor and Nitrogen are deposited by ratio frequency plasma enhanced chemical vapor deposition (PECVD). The effect of gas flow rate of ammonia (FrNH3) on the composition, microstructure and optical properties of the films has been investigated by X-ray photoelectron spectroscopy, Raman spectroscopy and ellipsometric spectra, respectively. The results show that with the increase of FrNH3, Si-N bonds appear while the short-range order deteriorate in the films. Besides, the optical properties of N-doped n-type a-Si:H thin films can be easily controlled in a PECVD system.


Sign in / Sign up

Export Citation Format

Share Document