scholarly journals Proximate composition and functional properties of composite sorghum-okara flour and sensory evaluation of local snack product (sosa)

Agrosearch ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 158-167
Author(s):  
P.I. Uzo-Peters ◽  
S.T. Ola

Partial substitution of cereals with legumes has the potential to improve the nutritional content, functionality and other properties of the composite flour. This study aimed at ascertaining the effect of partially substituting sorghum flour with okara flour and also to access the acceptability of a snack product, sosa, produced from the flour blends. The blends were produced from sorghum and okara flour using the following proportions respectively; 100:0; 90:10; 80:20; 70:30; and 60:40 with 100% sorghum serving as control. Results of the proximate composition of the flour blends showed an increase in protein (8.18%-22.73%), fat (1.7%-5.53%), crude fiber (2.9%-11.55%) and ash (1.72%- 2.83%), while the carbohydrate content decreased from (73.21% to 46.55%), with the moisture content varying between (10.81% and 12.41%). Bulk densities decreased with increase in okara substitution from 1g/ml to 0.72g/ml. The water absorption capacity and oil absorption capacity increased with increase in okara substitution from 278.67ml/100g to 328ml/100g and 177.33ml/100g to 249.33ml/100g respectively. The flour blends produced can all serve as thickeners and the local snack (sosa) produced from the flour blends was favourably accepted by the panelists. Keywords: Local snacks: supplementation: sorghum-okara: composite flour.

2020 ◽  
pp. 40-48
Author(s):  
J. A. Ayo ◽  
D. M. Atondo

The functional, sensory and cooking characteristics of noodles from blends of Acha-tigernut composite flour were investigated. The flour blends and noodles produced were analyzed for functional properties and cooking characteristics. The tiger nut flour was substituted into acha flour at 5, 10, 15 and 20% to produce Acha-tigernut composite flour which was used with other ingredients (salt and powdered ginger) to produce acha-tigernut based noodles. The functional properties of the flour, sensory and cooking characteristics of the noodles produced were determined. The water absorption capacity and swelling capacity increased from 210.59 to 215.53 (g/g) and 524.43 to 586.57, respectively with increase in tigernut flour. While oil absorption, solubility and bulk density decreases from 209.80 to 192.72 (g/g), 10.17 to 5.19 and 0.79 to 0.61 (g/ml) respectively. The swelling capacity ranged from 524.43 to 586.57 (%) with an increase in tigernut flour. The final viscosity of the samples was found to range from 2833.00to 2201.00 (m2/s). The peak properties decreased from 2680.67 to 1580.33 (RVU). The pasting temperature increases from 82.47to 87.57°C. The addition of tigernut decreased the trough, breakdown and peak time from 1730.67 to 1205.67, 985.67 to 434.67, and 5.84 to 5.71 RVU, respectively. The average mean scores for colour decreased from 6.95 to -6.30(%) While that of taste, flavor, texture and general acceptability increased from 5.55 to 6.60, 5.95 to 6.85 (%), 5.95 to 6.44 (%) and 6.70 to 6.83 (%), respectively, as the percentage of tigernut increased.


2019 ◽  
Vol 3 (2) ◽  
pp. 39
Author(s):  
Peter-Ikechukwu, A. ◽  
Ibeabuchi, J.C. ◽  
Eluchie, C.N. ◽  
Agunwa, I.M. ◽  
Aneke, E.J. ◽  
...  

<p><em>Functional properties of sausage rolls made from cocoyam and wheat flour enriched with soybean flour was studied. Cocoyam cormels and soybean were processed into flour, which were later used to formulate composite flour blends, with wheat flour in the ratio of: 90:10:0 (control 1), 80:10:10, 70:10:20, 60:10:40, 50:10:30, respectively, while 0:10:90 served as control 2. The result of the functional properties showed variation in behavior. There were no significant difference (p?0.05) in pH, bulk density, swelling index, foam capacity and emulsion capacity of the flour samples while significant difference (p?0.05) existed in water absorption capacity, oil absorption capacity and wettability.</em></p>


2019 ◽  
pp. 1-13
Author(s):  
M. T. Ukeyima ◽  
T. A. Dendegh ◽  
P. C. Okeke

Aim: To evaluate effect of carrot powder addition on the quality attributes of cookies produced from wheat and soy flour blends. Study Design: Cookies were produced from wheat flour, soy flour and carrot powder composite blends. Functional (bulk density, foam capacity, oil absorption capacity, water absorption capacity and swelling index) properties, Proximate (crude protein, ash, moisture, crude fibre, crude fat, carbohydrate and energy value) composition, Physical (weight, diameter, thickness and spread ratio) and sensory (appearance, flavour, taste, texture and overall acceptability) attributes were determined. Results: The functional properties showed that Bulk Density ranged from 0.82 – 0.92, Foam capacity ranged 3.92 – 5.00, Oil Absorption Capacity ranged from 0.60 – 0.97%, Water Absorption Capacity ranged from 1.05 – 1.45% and Swelling Index ranged from 2.37 – 2.75. Results of percentage proximate composition showed that moisture content ranged from 4.70 – 7.57, protein content ranged from 10.61 – 21.60, fat content ranged from 8.89 – 15.85, fibre content ranged from 1.39 – 4.30, ash content ranged from 0.70 – 1.23 and carbohydrate content ranged from 52.34 – 70.84. The physical properties showed that weight of the cookies ranged from 17.85 – 21.60, diameter ranged from 57.50 – 60.50, thickness ranged from 20.50 – 24.00 and spread ratio ranged from 2.40 – 2.91. The sensory attribute showed that cookies produced from wheat flour, soy flour and carrot powder compared well with cookies produced with wheat flour. The wheat flour cookie sample (A) was most preferred by the panellist. Conclusion: The functional properties of the composite flour produced from wheat, soybean and carrot powder show potential quality that when properly harnessed could be used for the production of baked product like biscuits, pastry etc. The proximate composition shows that the composite flour cookies were the most preferred sample to the 100% wheat flour cookies. This is due to its high protein, fat, ash and fibre content to that of thee 100% wheat cookies. However, in terms of proximate composition, the composite cookies were most acceptable. The physical property of the cookies indicates that the composite flour cookies were most preferred to the 100% wheat cookie. This could be seen from the high values it’s had in weight, diameter and spread ratio. However, the sensory score of the overall acceptability shows that the 100% wheat cookies were most acceptable. Though, the composite flour cookies compete very closely with 100% wheat cookies.


2020 ◽  
Vol 18 (1) ◽  
pp. 88-102
Author(s):  
A. T. OMIDIRAN ◽  
O. A. ADERIBIGBE ◽  
O. P. SOBUKOLA ◽  
O. O. AKINBULE

This study evaluated some quality attributes of pancakes from peeled and unpeeled sweetpotato flours and cassava starch. Cassava starch was substituted up to 30% of the total composite flour. The proximate composition, colour, carotenoid and functional properties of the different flour blends were determined. The flour blends were processed into pancakes and the proximate composition and sensory acceptability of the pancakes were determined. Data obtained were subjected to analysis of variance. The result showed that they were significant differences (p<0.05) in the functional properties of the flour blends. Bulk density, Water absorption capacity, Oil absorption capacity, swelling capacity ranged from 0.70 to 0.78 g/ml, 1.87 to 2.30 g/ml, 1.02 to 1.40 g/ml and 5.18% to 6.66%  respectively. There were significant differences (p<0.05) in the proximate composition of the pancake samples. The values ranged from 42.76 to 45.53%, 2.13 to 3.98%, 9.06 to 10.34%, 5.01 to 7.18%, 3.75 to 6.01% and 29.19 to 35.33% for moisture, ash, fat, protein, crude fibre and carbohydrate contents, respectively. Pancake produced from 100:0 peeled and unpeeled sweetpotato flour had the highest score for overall acceptability which can compare favorably, with pancakes from wheat flour which is the control sample. In conclusion, sweetpotato flour blended with cassava starch at different ratio gave good proximate and functional properties which resulted in pancakes of good quality attributes.    


2021 ◽  
pp. 108201322110694
Author(s):  
Ashura Katunzi-Kilewela ◽  
Leonard MP Rweyemamu ◽  
Lilian D Kaale ◽  
Oscar Kibazohi ◽  
Roman M Fortunatus

The study established the proximate composition, pasting, and functional properties of cassava flour (CF) blended with chia seeds flour (CSF). Composite flour was prepared by blending CF with CSF in the ratios of 95:05, 90:10, 85:15, 80:20, and 75:25 with CF and CSF used as controls, respectively. The effect of blending significantly (p < 0.05) increased protein, fat, fibre, and ash contents as CSF increased. On other hand, moisture and carbohydrate contents decreased significantly. Pasting properties of composite flour blends decreased significantly (p < 0.05) as the incorporation of CSF increased and a noticeable change was observed for composite flour (75:25) except for peak time and pasting temperature. Functional properties of water absorption capacity (WAC) of CSF were significantly different with CF and composite flour blends. Oil absorption capacity (OAC) of CF and CSF were significantly different, while the composite flour blends had varied OAC due to the inclusion of the different amounts of CSF. The swelling capacity (SC) of CF and CSF were not significantly different, but composite flour blends were significantly different from both CSF and CF. The least gelation concentration (LGC) and bulk density (BD) increased significantly as chia seeds increased. Increased concentration of chia CSF in the composite flour blends showed to alter the functional properties. This study recommends composite flour 75:25 for processing semiliquid products like porridge due to reduced pasting properties values that may be associated with increased energy density compared to CF.


2021 ◽  
pp. 23-35
Author(s):  
J. N. Okafor ◽  
J. N. Ishiwu ◽  
J. E. Obiegbuna

The aim of this research was to produce acceptable ‘fufu’ from a mixture of sorghum, millet, and African yam bean flours that will have a moderate carbohydrate and protein content with most optimized texture. The functional and sensory properties of flour blends produced from Sorghum, Millet and African yam bean was studied. Sorghum, Millet and African yam bean were processed into flour and mixed at different ratios to obtain composite flours. The flour formulations obtained were analyzed for water absorption capacity, bulk density, least gelation concentration , and viscosity .The  water absorption capacity ranged from 1.00 to 3.00,  the bulk density ranged from 0.56 to 0.82;the least gelation concentration ranged from 5.77 to 6.87,while the viscosity ranged from 0.956 to 9.30.Also proximate composition of the individual flours before formulation  was analyzed, it ranged from 6.13 to 8.46 moisture, 2.00 to 4.67 ash, 0.17 to 8.00 fiber,5.47 to 8.61 fat, 7.57 to 21.84 protein, 58.34 to 69.27 carbohydrate.The sensory values ranged from 5.60 to 6.45 for taste; 4.25 to 6.85  for colour; 5.15 to 6.80 for texture; 3.85 to 5.70 for aroma; 5.45 to 6.45 acceptability. Sample 10 (with the ratio of 40:70:20) had the highest rating for general acceptability. It was observed that sample 1(with the ratio of 60:50:60) had the lowest rating in taste and aroma. The mixture components that could produce optimum texture was determined through optimization plot. This work has demonstrated that acceptable ‘fufu’ with moderate protein and carbohydrate could be successfully produced using composite flours of sorghum, millet and African yam bean.


Food Research ◽  
2020 ◽  
Vol 4 (S2) ◽  
pp. 24-30
Author(s):  
N. Zainol ◽  
S. Subramanian ◽  
A.S. Adnan ◽  
N.H. Zulkifli ◽  
A.A.M. Zain ◽  
...  

The market of composite flour is growing as consumer nowadays choosing a healthy diet as personal preference. The suitability of the composite flour for use as intermediate or finish food ingredients highly depends on its physicochemical properties and its nutritional value. In this study, four types of local fruit crops (particularly their seeds) namely rambutan, cempedak, durian and nangka were dried and ground into powder form. The physicochemical properties such as bulk density, pH, water absorption capacity (WAC), oil absorption capacity (OAC), foam stability (FS), foam capacity (FC) as well as gelatinization properties of these composite flour were studied. Mineral content and heavy metal analytes were also determined. Results for bulk density from the least to the higher amount was 0.54±0.00 g/mL, 0.57±0.00 g/mL, 0.58±0.01 g/mL, 0.66±0.00 g/mL , 0.70±0.00 g/mL and 0.72±0.00 g/mL for rambutan flour, cempedak flour, tapioca flour, nangka flour, wheat flour and durian flour, respectively. Both cempedak flour and nangka flour showed the lowest pH value (5.72±0.01, 5.73±0.00), followed by rambutan flour and durian flour (6.67±0.00, 6.90±0.00) which similar to that tapioca flour and wheat flour (6.65±0.1, 6.08±0.0), respectively. Rambutan flour, cempedak flour and wheat flours showed the highest value in% of foam stability meanwhile these composite flours showed the lowest value in% of foam capacity. Results for water absorption capacity (WAC) and oil absorption capacity (OAC) in a range of 6% to 42% and 8% to 12% respectively, however, durian flour obtained the highest value for WAC while the value for OAC was the lowest. All of the composite flour possesses gelling properties at 13% concentration except for cempedak flour which completely gels at 20% of concentration. Rambutan flour showed the highest mineral analyte particularly in Zinc (107.19±0.17) and Copper (14.22±0.27) followed by nangka flour [Zinc (64.20±0.32) and Copper (10.40±0.12)] and durian flour [Zinc (52.38±0.42) and Copper (7.97±0.05)]. Level of heavy metal toxicity was under risk for all types of composite flour.


2019 ◽  
pp. 1-11 ◽  
Author(s):  
Newlove A. Afoakwah ◽  
John Owusu ◽  
Victoria Owusu

Aims: The aim of the study was to evaluate the physicochemical, sensory and functional properties of coconut flour (CF), coconut wheat composite flour (CWCF) and Cake produced from CF and CWCF. Methodology: Flour was prepared from matured ripe coconut fruit (CF). It was then blend with wheat flour (WF) into coconut wheat composite flour (CWCF) to produce cake. The CF and CWCF were subjected to proximate composition and functional properties analyses. Also, the physical properties, proximate composition and the sensory attributes of the cakes produced from CF and CWCF were determined. Results: The moisture content of CF and CWCF ranged from 4.5 to 9.04 g/100 g, the ash content of CF and CWCF ranged from 4.10 to 6.41 g/100 g and the dietary fiber content of CF was 11.16 g/100 g. CWCF exhibited a higher (87.1± 0.6) water absorption capacity and packed bulk density (0.79 ± 0.3 g/ mL). In this study, the cake volumes increased significantly (P < 0.05) in wheat flour (WF) as compared to CWCF and CF. The specific cake volume observed ranged from 1.48 to 2.01 mL/g. The blend of 50% coconut and 50% wheat flour increased significantly (P < 0.05) the moisture content of the CWCF cakes. The total carbohydrate content of the cakes varied from 20.40 ± 0.02 g/ 100 g to 63.05±0.14 g/ 100 g. Fat, ash and crude fiber and minerals (Ca, K, P Zn, Mg and Fe) increased in CWCF cakes. The sensory analysis conducted showed that there was a significant difference (P < 0.05) between CF cakes, WF cakes and CWCF cakes in the sensory qualities of appearance, texture, flavour and overall acceptability. In terms of appearance, the panelists scored coconut cake highest, but was significantly different (P < 0.05) from coconut wheat cake and wheat one. The least liked sample in terms of texture was wheat one. Conclusion: The present study underscored the potential application of coconut flour in the production of cake and possibly other bakery products.


Author(s):  
M. T. Ukeyima ◽  
T. A. Dendegh ◽  
S. E. Isusu

Aim: To evaluate the Quality characteristics of Bread produced from Wheat and Kidney Bean composite flour blend. Study Design: Composite bread was produced from wheat and kidney bean flour of various proportions (10, 15, 20 and 25%). Proximate (protein, ash, moisture, fibre, fat and carbohydrate) composition, functional (Bulk density, foaming capacity, swelling index, water absorption capacity and oil absorption capacity) properties and sensory (appearance, taste, flavour, texture and overall acceptability) attributes were determined. Results: Bread was produced from wheat and kidney beans composite (B, C, D and E) flour. The bread samples were subjected to physical, proximate and sensory analyses. The functional properties of the composite flour blends were also determined. The functional properties shows a significant (P<0.05) difference in water absorption capacity, oil absorption capacity and swelling index with values ranged from 1.10 – 0.60 ml/g, 1.03 – 0.76 ml/g and 5.92 – 2.89 ml/g respectively. The bulk density and foaming capacity shows significant (P<0.05) difference with its values ranging from 0.90 – 0.97 g/ml and 32.69 – 26.94 cm3 respectively as kidney beans flour increases. The result of the physical properties shows significant (P<0.05) difference in dough height, proofing rate, loaf volume, specific volume, baking loss and oven spring with values ranging from 1.169 – 3.39 cm3, 0.01 – 0.02 cm3/min, 0.79 – 1.19 cm3, 0.32 – 0.48 cm3/g, 1.59 – 2.79 and 101.58 – 102.79 respectively while the loaf weight ranged from 243.21 – 246.09 g. proximate composition of the sample were also analyzed and the result shows significant (P<0.05) difference in crude protein, moisture content, ash, crude fat, crude fibre and carbohydrate with values ranging from 8.36 – 10.47%, 22.18 – 23.28%, 0.97 – 1.38%, 11.80 – 12.94%, 0.29 – 0.59% and 51.33 – 57.10% respectively. The results of the sensory scores shows a significant (P<0.05) difference in all the samples analyzed. However, sample C with 15% kidney beans flour was most preferred. Conclusion: It could be concluded that increased in kidney beans flour addition in the production of composite bread had significant (P<0.05) impact on the proximate, physical and organoleptic properties of the bread. Hence, 85% wheat to 15% kidney bean flour should be used in bread making.


2018 ◽  
Vol 6 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Laura C. Okpala ◽  
Purrissima I. Ofoedu

Cookies were made from flour blends of 70% wheat and 30% sweet potato fortified with varying levels of brewers spent grain (BSG) flour. The BSG flour ranged between 0 and 9% of the flour weight. Cookies made with flour from 100% wheat served as the control. Studies were carried out on the functional properties of the flour blends, proximate composition, calorific values, physical characteristics and organoleptic quality of the cookies produced. Fortification of the blends with BSG flour reduced the bulk density from 1.24-1.08 g/mL and the water absorption capacity from 1.73-1.37g/g. Emulsion capacity increased from 76.10 – 83.45% and oil absorption from 2.20 – 3.66 g/g. The protein, fiber and ash contents of the cookies increased from 10.10-11.32%, 1.91-3.11% and 3.87-5.31% respectively. Cookies containing 9% BSG flour had the highest fibre content. Organoleptic studies revealed that cookies fortified with 3-6% BSG flour were more preferred than the control.


Sign in / Sign up

Export Citation Format

Share Document