gelation concentration
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
pp. 108201322110694
Author(s):  
Ashura Katunzi-Kilewela ◽  
Leonard MP Rweyemamu ◽  
Lilian D Kaale ◽  
Oscar Kibazohi ◽  
Roman M Fortunatus

The study established the proximate composition, pasting, and functional properties of cassava flour (CF) blended with chia seeds flour (CSF). Composite flour was prepared by blending CF with CSF in the ratios of 95:05, 90:10, 85:15, 80:20, and 75:25 with CF and CSF used as controls, respectively. The effect of blending significantly (p < 0.05) increased protein, fat, fibre, and ash contents as CSF increased. On other hand, moisture and carbohydrate contents decreased significantly. Pasting properties of composite flour blends decreased significantly (p < 0.05) as the incorporation of CSF increased and a noticeable change was observed for composite flour (75:25) except for peak time and pasting temperature. Functional properties of water absorption capacity (WAC) of CSF were significantly different with CF and composite flour blends. Oil absorption capacity (OAC) of CF and CSF were significantly different, while the composite flour blends had varied OAC due to the inclusion of the different amounts of CSF. The swelling capacity (SC) of CF and CSF were not significantly different, but composite flour blends were significantly different from both CSF and CF. The least gelation concentration (LGC) and bulk density (BD) increased significantly as chia seeds increased. Increased concentration of chia CSF in the composite flour blends showed to alter the functional properties. This study recommends composite flour 75:25 for processing semiliquid products like porridge due to reduced pasting properties values that may be associated with increased energy density compared to CF.



2021 ◽  
pp. 23-35
Author(s):  
J. N. Okafor ◽  
J. N. Ishiwu ◽  
J. E. Obiegbuna

The aim of this research was to produce acceptable ‘fufu’ from a mixture of sorghum, millet, and African yam bean flours that will have a moderate carbohydrate and protein content with most optimized texture. The functional and sensory properties of flour blends produced from Sorghum, Millet and African yam bean was studied. Sorghum, Millet and African yam bean were processed into flour and mixed at different ratios to obtain composite flours. The flour formulations obtained were analyzed for water absorption capacity, bulk density, least gelation concentration , and viscosity .The  water absorption capacity ranged from 1.00 to 3.00,  the bulk density ranged from 0.56 to 0.82;the least gelation concentration ranged from 5.77 to 6.87,while the viscosity ranged from 0.956 to 9.30.Also proximate composition of the individual flours before formulation  was analyzed, it ranged from 6.13 to 8.46 moisture, 2.00 to 4.67 ash, 0.17 to 8.00 fiber,5.47 to 8.61 fat, 7.57 to 21.84 protein, 58.34 to 69.27 carbohydrate.The sensory values ranged from 5.60 to 6.45 for taste; 4.25 to 6.85  for colour; 5.15 to 6.80 for texture; 3.85 to 5.70 for aroma; 5.45 to 6.45 acceptability. Sample 10 (with the ratio of 40:70:20) had the highest rating for general acceptability. It was observed that sample 1(with the ratio of 60:50:60) had the lowest rating in taste and aroma. The mixture components that could produce optimum texture was determined through optimization plot. This work has demonstrated that acceptable ‘fufu’ with moderate protein and carbohydrate could be successfully produced using composite flours of sorghum, millet and African yam bean.



Author(s):  
C. O. Chude ◽  
C. C. Nwagbo ◽  
E. F. Okpalanma ◽  
B. O. Uba

Lactic fermentation is commonly employed to improve protein digestibility and overall nutritional quality of grains foods. This study evaluated the functional and rheological properties of flour samples from Bambara groundnut fermented with Lactobacillus plantarum [NRRL B-4306] and Lactobacillus fermentum [NRRL B-1932] obtained from the United States Department of Agriculture. Functional profile such as particle size index, water absorption capacity, swelling capacity, and least gelation concentration of the flour were determined; as well, amylograph and maturograph evaluations were used to determine the rheological properties and the results presented as average, minimum, and maxi­mum values. Particle size determination observed that 150, 125, 105 µ orifice did not readily accommodate particles from the non-inoculated samples while the inoculated samples passed through 150 and 125 µ but did not readily pass through 105 µ orifice. Bioprocess with lactic acid bacteria increased the water absorption capacity of the flour samples from 346.5 to 386.4%, the least gelation concentration decreased from 5.3 to 4.1%, while swelling capacity increased from 14.9 to 23.2 mg/100 g for non-inoculated and inoculated flours, respectively. Rheological investigations show evaluations for amylograph and maturogram determinations. Values obtained for amylograph indicate that temperature at start of gelatinization was peak at 63.8 and 63.00C for non-fermented and LAB-fermented flour with no significant (p ˂ 0.05) difference, while temperature at maximum viscosity and maximum viscosity had significant (p ˂ 0.05) values of 92.1 and 76.00C, as well as 730 and 265 brabender units (BU), respectively. Thus, amylograph quality of the fermented flour sample was indicated by the maximum viscosity which is significantly higher in the case of non-inoculated flour sample. The maturograph evaluation also recorded the maturation behavior of the dough prepared from the test flours after the proofing time (fermentation rest) by means of a sensing probe which records the elasticity of the mature dough every 2 min and produces the typical zigzag form of the maturogram. This action was recorded in maturograph units (MU) on the strip-chart with values of 44 and 28 min for final proof time, 750 and 610 MU for dough level, 210 and 220 MU for dough elasticity, as well as 10 and 12 min for proofing stability, determined respectively for non-fermented and LAB-fermented flour samples. LAB-fermentation demonstrated to improve the functionality and rheology of Bambara groundnut flour and the production process could be further controlled to achieve products of optimal quality.



2021 ◽  
pp. 63-77
Author(s):  
T. A. Dendegh ◽  
B. M. Yelmi ◽  
R. A. Dendegh

Quality attributes of stiff porridges prepared from Pearl millet and African Yam Bean (AYB) flour blends were studied. Various ratios such as A (100% pearl millet), B (90:10), C (80:20), D (70:30), E (60:40) and F (50:50) of pearl millet and African Yam Bean (AYB) composite flours were mixed and analyzed for functional, proximate composition, mineral elements and sensory properties. The blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of African Yam Bean with Pearl Millet led to increases in moisture (24.29 to 37.50%) protein (10.90 to 19.70%), fibre (1.30 to 2.00%), Ash (0.43 to 0.55%) and fat (3.80 to 5.20%) while the carbohydrate content of the blends decreased (from 62.07 to 39.85%) respectively. Functional properties such as bulk density decreased with increase in AYB from (1.80 to 0.72 g/ml, swelling index also increases from 0.75 to 0.56 g/ml, water absorption capacity decreases from 2.20 to 2.64 g/ml) and Least Gelation Concentration (6%). The sensory attributes of stiff porridges were not adversely affected by African Yam Bean flour. Therefore, it should be possible to incorporate up to 50% of legumes such as African Yam Bean with Pearl Millet in the preparation of stiff porridges.



Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 65
Author(s):  
Jean-Michel Guenet

The physics side of organogelation is broached through three main aspects, thermodynamics (formation and melting), structure (morphology and molecular organization), and rheology. A definition of a gel is first discussed so as to delimit the field of investigation; namely, systems constituted of fibril-like entities. It is again highlighted that gel formation occurs through first-order transitions, chiefly by homogeneous nucleation. A deeper knowledge of the system is thus achieved by mapping out the temperature–concentration phase diagram. Some experimental diagrams are shown, while diagrams likely to pertain to these systems are presented. The molecular arrangement is basically crystallization that occurs in a preferred direction, hence the formation of fibrils. The effects of the solvent type, the quenching process of the solution are discussed with respect to the morphology and the crystal structure. Finally, the rheological properties are tackled. Notions of critical gelation concentration and percolation are debated. The interest of mapping out the temperature–concentration phase diagram is emphasized, particularly for understanding the variation of the gel modulus with temperature.



2021 ◽  
pp. 18-29
Author(s):  
Nguseer Patience Orafa ◽  
Osaretin Buraimoh Samuel ◽  
Anastasia Angorkuma Daagema

This study evaluates the quality of yam and carrot flour blends for the production of stiff dough and biscuits. Flour samples were prepared from yam tubers and carrot flours .The carrot flour was used to substitute 5, 10, 15, and 20 of the yam flour on the stiff dough. Biscuits were prepared from various blends of wheat flour, carrot flour and yam flours. The proximate composition, functional properties, vitamin, minerals and sensory attribute of the flour blends were carried out using appropriate standard methods for the analysis. The sensory properties of the stiff dough and biscuits were determined. The proximate composition of the flour blends were significantly (P< 0.05) different for the moisture (7.52.-6.89%), ash (2.00-2.36%), protein (4.90-4.55%), fat (1.41-1.25%) and carbohydrate (82.09-77.73%). The water absorption (2.53 – 4.10%) and least gelation concentration( 6.43-12.03%) of the blends increased while the bulk density  (0.65-0.53 g/ml), dispersibility (1.49 -2.50%), swelling capacity( 2.59 -3.83%) and foaming capacity (26.73-6.44 g/ml).The blends were rich in iron( 8.43-19.22 mg/100g), zinc (7.43-18.11 mg/100g), magnesium (94.54-170.49 mg/100g) and phosphorus (30.63-84.01 mg/100g). The blends were rich in pro-vitamin A (5.51-17.42). Vitamin B1 (0.43-0.84) and vitamin C (4.81-17.81 mg/100g). The sensory scores recorded on the flour blends for appearances (7.10- 8.50), texture (7.40 -8.10), taste (7.10 -7.85), aroma (6.70 -7.60) and acceptability (6.35-7.70) decreased with increasing level of carrot flour in the blends. The biscuits containing  75% wheat flour, 20% yam flour and 5% carrot flour was the most preferred.



Gels ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
Pedro M. Silva ◽  
Artur J. Martins ◽  
Luiz H. Fasolin ◽  
António A. Vicente

Olive oil has recognized health benefits but lacks structural resilience to act in a similar fashion as do the typically used triglycerides (TAGs) when applied in food manufacturing. Therefore, olive oil structuring is critical to widening its use as a healthier alternative in spreadable products. Foreseeing the development of an application for the food industry, three types of natural waxes were used as organogelators, generating olive oil organogels with distinct properties. Retail-simulated storage conditions were used to mimic real-life industrial and commercial use. Organogel systems were evaluated according to their oxidation stability and textural and rheological properties. Textural and rheological parameters increased in response to increasing gelator concentration, while oxidation values (below 1.5 meq O2·kg−1) remained within legal limits. Organogels displayed similar textural properties to those of commercially available spreadable products, while displaying a low critical gelation concentration. In short, it was shown that tailoring the physicochemical properties of organogels towards specific applications is possible. The produced organogels showed similar properties to the ones of commercially available spreadable products, revealing favourable oxidative profiles. Therefore, an industrial application can be easily foreseen, building on the natural characteristics of olive oil as a healthier alternative to current spreadable products.





2020 ◽  
pp. 40-49
Author(s):  
C. A. Orisa ◽  
S. U. Udofia

The objective of this study was to determine the functional and pasting properties of composite flours from Triticum durum (wheat), Digitaria exilis (acha), Vigna unguiculata (cowpea) flours and Moringa oleifera leaf powder. The flour samples were mixed in a four by four factorial, in complete randomized design (CRD) to formulate the composite blends at four different levels (25, 50, 75 and 100) which gave 16 samples. The statistical analysis of data collected was used to select five (5) generally accepted composite flour samples (wheat, acha, cowpea and moringa oleifera leaf powder flours) with ratio of 100:0:0:0, 75:25:0:0, 0:50:50:0, 50:23:25:2 and 75:25:0:0, respectively. The flour samples were analyzed for functional and pasting properties using standard methods. Results of the functional properties showed that water absorption capacity of the composite flour blend ranged from 0.87-1.11g/g, bulk density 0.39-0.42 g/ml, least gelation concentration 2.00-4.00%, solubility 19.46-25.35%, wettability 2.57-4.02min, oil absorption 1.61-1.79g/g and least gelation temperature 62.00-68.50oC. The functionality of the composite flours such as water and oil absorption capacities, least gelation concentration and bulk density were improved when cowpea was incoporated into the blends than for moringa oleifera leaf powder and acha flour. On the other hand, wettability and solubility of the flour blends were improved when acha was incorporated into the blend. Results of pasting properties showed that peak viscosity ranged from 73.04-385.79RVU, trough viscosity 57.96-341.42RVU, break down viscosity 15.08-44.38RVU, final viscosity 109.54-581.58RVU, set back viscosity 51.58-240.17RVU, pasting time 5.70-6.40min and pasting temperature 50.08oC-50.35oC. These properties were shown to be higher when cowpea was incorporated into the flour blends than for moringa oleifera leaf powder and acha flour. However, pasting properties of the composite flour blends were higher than 100% wheat flour. This result therefore showed that composite flour from wheat, acha, cowpea and Moringa oleifera leaf powder has improved functionality and high pasting properties than the individual wheat flour and will serve as a useful ingredient in food formulations such as in dough, soups and baked products.



2020 ◽  
Author(s):  
Anna Constantinou ◽  
Valeria Nele ◽  
James Doutch ◽  
Roman Moiseev ◽  
Vitaliy Khutoryanskiy ◽  
...  

Abstract Thermoresponsive polymers featuring the appropriate combination of structural characteristics, i.e. architecture, composition, and molar mass (MM), can form physically crosslinked networks in a solvent upon changes in temperature. This fascinating class of polymers finds utility in various sectors such as formulation science and tissue engineering. Here, we report a novel thermoresponsive triblock terpolymer which out-performs the most commonly used and commercially available thermoresponsive polymer, Poloxamer P407 (also known as Pluronic® F127) in terms of gelation concentration. Specifically, the in-house synthesised polymer forms gels at lower concentrations that is an advantage in biomedical applications. To elucidate the differences in their macroscale gelling behaviour, we investigate their micellization via differential scanning calorimetry, and their nanoscale self-assembly behaviour in detail by means of small-angle neutron scattering by simultaneously recording their rheological properties (Rheo-SANS). Two different gelation mechanisms for the two polymers are revealed and proposed. Ex vivo gelation study upon intracameral injections demonstrated excellent potential for its application to improve drug residence in the eye.



Sign in / Sign up

Export Citation Format

Share Document