scholarly journals Insecticidal activity of sesame leaf and stem extracts on Clavigralla tomentosicollis Stal (Hemiptera: Coreidae)

2021 ◽  
Vol 13 (1) ◽  
pp. 145-151
Author(s):  
H.E. Negbenebor ◽  
R.I. Abdullahi ◽  
S. Nura ◽  
U. Sharif

No Abstract.

2020 ◽  
pp. 54-60
Author(s):  
Marina Nikolaevna Kostina ◽  
◽  
Filipp Nikolaevich Kostin ◽  

2019 ◽  
Vol 26 (6) ◽  
pp. 414-422
Author(s):  
Jia Liu ◽  
Ping Song ◽  
Jie Zhang ◽  
Ziyan Nangong ◽  
Xiaobei Liu ◽  
...  

Background: Genome sequence analysis (GenBank access No.: FN667742.1) shows that Xenorhabdus nematophila ATCC19061 contains one gene (Xn-cbp) encoding chitin binding protein (Xn-CBP). Objective: The present work aims to clarify the characteristics and function of Xn-CBP from X. nematophila HB310. Methods: In this study, the Xn-cbp gene was cloned and expressed in Escherichia coli BL21 (DE3). Substrate binding assays were performed to explain the ability of Xn-CBP combined with the polysaccharide. The insecticidal toxicity of Xn-CBP against the second-instar larvae of Helicoverpa armigera was determined by feeding method. Besides, the antifungal activity of Xn-CBP against Coniothyrium diplodiella, Verticillium dahlia, and Fusarium oxysporum was tested by spore germination assay and hyphal extension assay. Results: Xn-CBP encoded 199 amino acids with a calculated mass of 28 kDa, which contained a signal peptide and a chitin binding domain. The Bmax and Kd values of Xn-CBP to colloidal chitin were 2.46 and 4.08, respectively. Xn-CBP had insecticidal activity against the H. armigera with a growth inhibition rate of 84.08%. Xn-CBP had the highest spore germination inhibitory effect on C. diplodiella with the inhibition rate of 83.11%. The hyphal growth inhibition rate of Xn-CBP to F. oxysporum, 41.52%, was higher than the other two fungi. Conclusion: The Xn-CBP had the highest binding ability to colloidal chitin and it showed insecticidal activity and antifungal activity. The present study laid a foundation for further exploitation and utilization of X. nematophila.


2020 ◽  
Vol 23 (2) ◽  
pp. 111-118
Author(s):  
Zhiping Che ◽  
Jinming Yang ◽  
Di Sun ◽  
Yuee Tian ◽  
Shengming Liu ◽  
...  

Background: It is one of the effective ways for pesticide innovation to develop new insecticides from natural products as lead compounds. Quinine, the main alkaloid in the bark of cinchona tree as well as in plants in the same genus, is recognized as a safe and potent botanical insecticide to many insects. The structural modification of quinine into 9R-acyloxyquinine derivatives is a potential approach for the development of novel insecticides, which showed more toxicity than quinine. However, there are no reports on the insecticidal activity of 9Racyloxyquinine derivatives to control Mythimna separata. Methods: Endeavor to discover biorational natural products-based insecticides, 20 novel 9Racyloxyquinine derivatives were prepared and assessed for their insecticidal activity against M. separata in vivo by the leaf-dipping method at 1 mg/mL. Results: Among all the compounds, especially derivatives 5i, 5k and 5t exhibited the best insecticidal activity with final mortality rates of 50.0%, 57.1%, and 53.6%, respectively. Conclusion: Overall, a free 9-hydroxyl group is not a prerequisite for insecticidal activity and C9- substitution is well tolerated; modification of out-ring double-bond is acceptable, and hydrogenation of double-bond enhances insecticidal activity; Quinine ring is essential and open of it is not acceptable. These preliminary results will pave the way for further modification of quinine in the development of potential new insecticides.


2017 ◽  
Vol 14 (3) ◽  
pp. 262-269
Author(s):  
Ye Liu ◽  
Xinfei Chen ◽  
Xiaoyong Xu ◽  
Jiagao Cheng ◽  
Xusheng Shao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document