scholarly journals Stability constants of complexes of metal ions with peatsoil humic acids under non-acid-conditions

2021 ◽  
Vol 14 (1) ◽  
pp. 54-63
Author(s):  
Yusuf Sabo ◽  
W.L.O. Jimoh ◽  
Isa Baba Koki ◽  
Q.O. Sholadoye

Stability constants of complexes of four divalent metal ions viz. Cu2+, Pb2+,Mg2+ and Cd2+  with humic acids (HA) were determined by potentiometric titration of humic acids with the corresponding salt of the divalent metals in aqueous media under non-acid-condition. The log K (logarithm of the stability constant) ranged from 1.0942 to 2.7471 for metal-humic acid complexes were determined using point-wise computational method. The order of stability constants were obtained as follows: Cu >Pb> Cd > Mg for metal -HA complexes respectively, indicating a higher degree of complexation with Cu metal ion. 

1982 ◽  
Vol 47 (4) ◽  
pp. 1078-1085 ◽  
Author(s):  
Jana Podlahová ◽  
Jaroslav Podlaha

The stability constants of complexes formed by the anions of ethylenediphosphinetetraacetic acid and the metal ions Cu(I), Ag(I), Ca(II), Mn(II), Fe(II), Co(II), Ni(II), Zn(II), Cd(II), Hg(II), Pb(II) and La(III) were determined by various methods (mainly potentiometry and UV-VIS spectrophotometry), followed by data treatment using standard computer programs. The type and stability of the complexes formed depend mostly on the relative affinity of the particular metal ion for the two donor groups of the ligand. Unlike EDTA, the ligand is highly selective for soft metal ions, whose complexes are very stable even in strongly acidic aqueous solutions.


1969 ◽  
Vol 47 (12) ◽  
pp. 2320-2323 ◽  
Author(s):  
Vedula S. Sastri ◽  
Keijo I. Aspila ◽  
Chuni L. Chakrabarti

Studies on the solvent extraction of morpholine dithiocarbamic acid complexes of divalent metal ions Mn, Fe, Co, Ni, Cu, Zn, Pb, Cd, Hg, and Sn were carried out, and the extraction constants and the overall stability constants were determined. The stability constants of complexes of Cu(II) formed with various substituted dithiocarbamic acids, showed a variation of the stability constants with the basicity of the nitrogen and sulfur atoms in the reagents.


1984 ◽  
Vol 62 (11) ◽  
pp. 2299-2301
Author(s):  
C. Mahalingam ◽  
J. K. Sthapak ◽  
D. D. Sharma ◽  
R. L. Tiwari ◽  
Smita Sthapak

The stability constants of metal complexes of 2-hydroxy-5-methylazobenzene-2′-carboxylic acid have been determined spectrophotometrically. These follow the Irving–Williams sequence: log KOH(H) = 10.67, log K1(Co) = 9.02, log K1(Ni) = 9.68, log K1(Cu) = 13.37, log K1(Zn) = 7.58, and [Formula: see text]The chelates of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and [Formula: see text] with the dye have been prepared and characterized on the basis of their ir and reflectance spectra.


2013 ◽  
Vol 67 (5) ◽  
pp. 773-779 ◽  
Author(s):  
Ivana Kostic ◽  
Tatjana Andjelkovic ◽  
Ruzica Nikolic ◽  
Tatjana Cvetkovic ◽  
Dusica Pavlovic ◽  
...  

The complexation of humic acid with certain heavy metal ions (Co(II), Ni(II), Cu(II), Zn(II) and Pb(II)) was investigated. The stability constants of humate complexes were determined by method which is based on distribution of metal ions between solution and resin in the presence and the absence of ligand, known as Schubert?s ion exchange method. Experiments were performed at 25 ?C, at pH 4.0 and ionic strength of 0.01 mol dm-3. It was found that the 1:1 complexes were formed between metal ions and humic acid. Obtained results of the stability constants, log ?mn, of complexes formed between the metal ions and humic acid follow the order Co(II) < Ni(II) < Cu(II) > Zn(II) which is the same like in the Irving-Williams series for the binding strength of divalent metal ion complexes. Stability constant of complex between Pb(II) ions and humic acid is greater than stability constants of other investigated metal-humate complexes. The investigation of interaction between heavy metal ions and humics is important for the prediction of the distribution and control of the migration of heavy metals in natural environment.


2008 ◽  
Vol 27 (2) ◽  
pp. 157 ◽  
Author(s):  
Brij Bhushan Tewari

In coordination compounds studies, a knowledge of the magnitude of the stability constants of complexes is necessary for preliminary quantitative treatment. Described herein is a method that involves the use of advanced ionophoretic technique for the study of the equilibria in binary complex systems in solution. This method is based upon the migration of a spot of the metal ion on a paper strip at different pH values of background electrolyte containing 0.1 M perchloric acid and 0.01 M norvaline. A graph of pH against mobility provides information about the nature of the complexation and helps in calculating stability constants. Using this method, the stability constants of binary complexes metal(II) – norvaline have been determined to be (8.11 ± 0.02, 7.03 ± 0.09); (3.77 ± 0.11, 2.39 ± 0.07) and (7.59 ± 0.05, 6.17 ± 0.04) (log K values) for Cu(II), Mn(II) and UO2(II) complexes, respectively, at 35 ºC.


2012 ◽  
Vol 10 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Azza Shoukry ◽  
Wafaa Hosny

AbstractIn the present study, the acid-base equilibria of N,O-carboxymethy chitosan abbreviated as (NOCC), is investigated. The complex formation equilibria with the metal ions Cu(II), Ni(II), Co(II), Mn(II), and Zn(II) are investigated potentiometrically. The stability constant values of the binary and ternary complexes formed in solution were determined and the binding centers of the ligands were assigned. The relationships between the properties of the studied central metal ions as ionic radius, electronegativity, atomic number, and ionization potential, and the stability constants of the formed complexes were investigated in an effort to give information about the nature of chemical bonding in complexes and make possible the calculation of unknown stability constants. Cu(II), Ni(II), and U(VI) complexes with NOCC are isolated as solid complexes and characterized by conventional chemical and physical methods. The structures of the isolated solid complexes are proposed on the basis of the spectral and magnetic studies. The ternary copper(II) complexes involving NOCC and various biologically relevant ligands containing different functional groups, as amino acids and DNA constituents are investigated. The stability constants of the complexes are determined and the concentration distribution diagrams of the complexes are evaluated.


MRS Advances ◽  
2017 ◽  
Vol 2 (46) ◽  
pp. 2497-2504 ◽  
Author(s):  
Julius Choi ◽  
Hyuk Taek Kwon ◽  
Hae-Kwon Jeong

ABSTRACTThin films of metal-organic frameworks (MOFs) have shown promising for applications such as gas separation, gas storage, optoelectronics or sensing. However, synthesis of polycrystalline MOF films and membranes depends largely on the surface properties of supports, limiting the availability of common supports. It is, therefore, highly desirable to develop ways to modify the surface properties of common supports for the preferred heterogeneous nucleation of the MOFs. Here, we demonstrated that graphene-oxide (GO) can be exploited to readily modify the surface properties of common supports, thereby leading to well inter-grown polycrystalline MOF films. A prototypical zeolitic-imidazolate framework ZIF-8 was chosen as a model MOF system. The stabilization of GO layers with divalent metal ions was found a key step to synthesize well inter-grown ZIF-8 films. The effect of divalent metal ions on the stability of GO layers and the quality of the resulting ZIF-8 films were systematically investigated. Finally, the single gas permeation behaviors of the ZIF-8 films grown on GO-modified supports were tested.


Sign in / Sign up

Export Citation Format

Share Document