scholarly journals Genotypic Characterization of Aminoglycoside Resistance Genes from Bacteria Isolates in Selected Municipal Drinking Water Distribution Sources in Southwestern Nigeria

1970 ◽  
Vol 29 (3) ◽  
Author(s):  
Adesoji. A. Timilehin ◽  
Olatoye. I. Olufemi ◽  
Ogunjobi. A. Adeniyi

BACKGROUND: Multi-drug Resistant (MDR) bacteria could lead to treatment failure of infectious diseases and could be transferred by non-potable water. Few studies have investigated occurrence of Antibiotic Resistance Genes (ARGs) among bacteria including Aminoglycoside Modifying Genes (AMGs) from Drinking Water Distribution Systems (DWDS) in Nigeria. Here, we aimed at characterization of AMGs from DWDS from selected states insouthwestern Nigeria.METHODS: One hundred and eighty one (181) MDR bacteria that had been previously characterized using 16S rDNA and showed resistance to at least one aminoglycoside antibiotic were selected from treated and untreated six water distribution systems in southwestern Nigeria. MDR bacteria were PCR genotyped for three AMGs:aph (3´´)c, ant (3´´)b and aph(6)-1dd.RESULTS: Out of 181 MDR bacteria genotyped, 69(38.12%) tested positive for at least one of the genotyped AMGs. Highest (50, 27.62%) detected gene was ant (3”)c followed by aph (3")c(33,18.23%). Combination of aph(3")c and ant (3")b in a single bacteria was observed as the highest (14, 7.73%) among the detected gene combination. Alcaligenes sp showed the highest (10/20) occurrence of ant (3")b while aph(3")c was the highest detected among Proteussp (11/22). Other bacteria that showed the presence of AMGs include: Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter and Serratia.CONCLUSIONS: High occurrence of ant (3”)c and aph (3”)c among these bacteria call for urgent attention among public health workers, because these genes can be easily disseminated to consumers of these water samples if present on mobile genetic elements like plasmids, integrons and transposons.

2020 ◽  
Vol 41 (S1) ◽  
pp. s255-s255
Author(s):  
Ayodele T. Adesoji ◽  
Adeniyi A. Ogunjobi

Background: Multidrug-resistant bacteria can lead to treatment failure, resulting in infectious diseases being transferred through nonpotable water. Aminoglycosides are an important class of antibiotics that are abused in Nigeria. Few studies have investigated aminoglycoside-modifying genes (AMGs) that are likely responsible for resistance in Nigeria bacteria isolates. Therefore, we aimed to characterize AMGs from isolates in drinking water distribution systems (DWDS) in southwestern Nigeria. Methods: Multidrug-resistant bacteria (n = 181) that had been previously characterized by 16S rDNA sequencing and that were positive for resistance to at least 1 aminoglycoside antibiotic were selected from 6 treated and untreated water distribution systems. Strains were PCR genotyped for 3 AMGs: aph(3)c, ant(3)b and aph(6)-1dd. Results: Of 181 MDR bacteria tested, 69 (38.12%) were positive for at least 1 of the AMGs. The most common was ant(3)c (27.6%), followed by aph(3")c (18.23%). Both aph(3)c and ant(3")b were found in 7.73% of tested isolates, ant(3)b was most commonly found in Alcaligenes spp (50%). Furthermore, aph(3")c was most commonly detected in Proteus spp (50%). Other genera positive for AMGs included Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter, and Serratia. Conclusions: High occurrence of ant(3)c and aph(3)c among these bacteria call for urgent attention among public health workers because these genes can be easily disseminated to consumers if present on mobile genetic elements like plasmids, integrons, and transposons.Funding: NoneDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document