scholarly journals Investigation and validation of optimal cutting parameters for least surface roughness in EN24 with response surface method

Author(s):  
V Suresh Babu ◽  
S Sriram Kumar ◽  
RV Murali ◽  
M Madhava Rao
2009 ◽  
Vol 83-86 ◽  
pp. 793-800 ◽  
Author(s):  
M.M. Noor ◽  
K. Kadirgama ◽  
M.M. Rahman ◽  
N.M. Zuki N.M. ◽  
Mohd Ruzaimi Mat Rejab ◽  
...  

This paper develops the predicting model on surface roughness of laser beam cutting (LBC) for acrylic sheets. Box-Behnken design based on Response surface method was used to predict the effect of laser cutting parameters including the power requirement, cutting speed and tip distance on surface roughness during the machining. Response surface method (RSM) was used to minimize the number of experiments. It can be seen that from the experimental results, the effects of the laser cutting parameters with the surface roughness were investigated. It was found that the surface roughness is significantly affected by the tip distance followed by the power requirement and cutting speed. Some defects were found in microstructure such as burning, melting and wavy surface. This simulation gain more understanding of the surface roughness distribution in laser cutting. The developed model is suitable to be used in the range of (power 90 to 95, cutting speed 700 to 1100 and tip distance 3 to 9) to predict surface roughness.


Author(s):  
Wei Zhang ◽  
Maohua Xiao ◽  
Liang Zhang

Background: Problems, such as severe hardening and poor processing quality, are present in the cutting process of difficult-to-machine materials. Objective: To investigate and optimize the machining parameters of 630 stainless steel by using an independently designed 28-KHz double-excitation elliptical vibration cutting process. Methods: Using the AdvantEdge platform and response surface method, the effects of the cutting speed Results: Results show that the error of the experimental results relative to the predicted ones under the optimized cutting parameter combination is less than 9%. Conclusion: Based on the response surface method, the optimal cutting parameters are obtained, and the cutting force and cutting temperature are at a lower level. The findings indicate the feasibility of the optimized machining parameters and provide a reference for the selection of cutting parameters and the publish of patents and when ultrasonic vibration is used to cut difficult-to-machine materials.


Author(s):  
Zhaoju Zhu ◽  
Shaochun Sui ◽  
Jie Sun ◽  
Jianfeng Li ◽  
Kai Liu

In order to break the bottleneck of low efficiency, bad quality following drilling alloy Ti6Al4V, the effect of cutting parameters on thrust force, drilling vibration, burr height and surface roughness was studied based on response surface method. The optimized parameters were obtained. Results showed that feed rate had significant effect on thrust force and little on drilling vibration, while cutting speed had significant effect on vibration and little on thrust force. It is also observed that surface roughness decreased with cutting speed increasing, as well as increased with feed rate increasing. In addition, microstructure on the drilled hole surface showed mobility along feeding direction. Grain refinement on the drilling hole surface became serious with the increase of cutting speed and feed rate.


2011 ◽  
Vol 213 ◽  
pp. 402-408 ◽  
Author(s):  
M.M. Rahman ◽  
Md. Ashikur Rahman Khan ◽  
M.M. Noor ◽  
K. Kadirgama ◽  
Rosli A. Bakar

This paper presents the influence of EDM parameters in terms of peak ampere, pulse on time and pulse off time on surface roughness of titanium alloy (Ti-6Al-4V). A mathematical model for surface finish is developed using response surface method (RSM) and optimum machining setting in favor of surface finish are evaluated. Design of experiments (DOE) techniques is implemented. Analysis of variance (ANOVA) has been performed to verify the fit and adequacy of the developed mathematical models. The acquired results yield that the increasing pulse on time causes fine surface till a certain value and then deteriorates the surface finish. It is investigated that about 200 µs pulse off time produce superior surface finish. These results lead to desirable surface roughness and economical industrial machining by optimizing the input parameters.


Sign in / Sign up

Export Citation Format

Share Document