scholarly journals Heavy metal enrichment and remediation potential of Jatropha curcas Linn seedlings in dumpsite contaminated soil

2019 ◽  
Vol 23 (8) ◽  
pp. 1459
Author(s):  
O.O. Akintola ◽  
E.K. Abodurin ◽  
I.A. Bodede
2013 ◽  
Vol 2 (1) ◽  
pp. 164-174 ◽  
Author(s):  
Shamiyan R Khan ◽  
JI Nirmal Kumar ◽  
Rita N Kumar ◽  
Jignasha G Patel

The present study was carried out to assess the physico-chemical properties, heavy metal enrichment and fungal isolation and characterization of the top soil samples collected in-situ from aged refined kerosene contaminated as well as uncontaminated garden soil sites in Anand, Gujarat, India. The total petroleum hydrocarbon (TPH) concentrations were 17,510 mg/kg in kerosene contaminated soil against 142.65 mg/kg for uncontaminated soils. The contamination increased the soil organic carbon, nitrogen and clay to 2.95 %, 0.612 %, 36.22 % as compared to 1.5%, 0.153%, 32.4% respectively in the uncontaminated soil. Increased concentration of heavy metals like Cobalt, Copper, Iron, Zinc and Lead against the uncontaminated soil was encountered. Ten native fungal speciesbelonging to a total of five genera include Aspergillus (A. terreus, A. versicolor, A. niger); Fusarium oxysporum; Penicilliumjanthinellum from the uncontaminated garden soil, whereas the contaminated soil included Aspergillus (A. terreus, A. versicolor , A. niger) Candida tropicalis,Cladosporiumbruhnei and Fusarium oxysporum, identified based on 18S rRNA and the nucleotide sequences were submitted to the NCBI, GenBank database. The changes created by kerosene contamination resulted in variation in individual concentrations of physicochemical properties, soil conductivity, pH and soil fertility indices probably dwindle the growth of fungal strains causing a reduction in the fungal population in the kerosene contaminated soil. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 164-174 DOI: http://dx.doi.org/10.3126/ije.v2i1.9219


2017 ◽  
Vol 2 (2) ◽  
pp. 30-34
Author(s):  
Surahmaida . ◽  
Sarwoko Mangkoedihardjo

ABSTRAKPerkembangan industri yang semakin pesat secara tidak langsung menimbulkan pencemaran lingkungan di sekitarnya. Salah satunya adalah pencemaran tanah oleh logam berat yang dihasilkan dari hasil industri tersebut. Metode yang dapat digunakan untuk meremediasi lahan tercemar yaitu dengan menggunakan tanaman (fitoremediasi). Jarak pagar (Jatropha curcas) merupakan tanaman tahunan dari famili Euphorbiaceae yang umumnya digunakan sebagai tanaman penghasil biodiesel, tanaman pembatas pagar dan tanaman hias. Tujuan dari penelitian ini untuk mengkaji kemampuan jarak pagar dalam meremediasi Cd: untuk mengetahui pengaruh Cd terhadap tinggi tanaman dan luas daun; dan nilai persentase reduksi tanah yang tercemar Cd; dan nilai persentase akumulasi logam Cd dalam jarak pagar. Penelitian eksperimental ini dilakukan dengan menggunakantanah taman; limbah Cd buatan dengan konsentrasi 5 ppm, 15 ppm, 25 ppm, 35 ppm dan 45 ppm; dan Spektrofotometer Serapan Atom (AAS) untuk pengujian logam berat Cd pada tanaman jarak pagar. Data yangdiperoleh dari penelitian ini menunjukkan bahwa Cd berpengaruh terhadap tinggi tanaman dan luas daun; nilai persentase reduksi tanah tercemar Cd yaitu sebesar 76-91%; jarak pagar mempunyai kemampuan dalam mengakumulasi Cd; dan nilai persentase akumulasi logam Cd dalam jarak pagar adalah 46-125%.Kata kunci: Logam Berat Cd, Jarak pagar (Jatropha curcas), FitoremediasiABSTRACTThe rapid development of the industry indirectly lead to pollution of the surrounding environment. One of them is the contamination of the soil by the heavy metals resulting from the industry. The method that can be used to remediate contaminated land is by using plants (called phytoremediation). Jatropha curcas plant is an annual plant of the Euphorbiaceae family that is commonly used as a biodiesel producing plant, fence limiting plants and as ornamental plants. The purpose of this research is to assessing the ability of Jatropha curcas in remediating Cd; to know the effect of Cd on plant height and leaf area; and the percentage value of Cd contaminated soil reduction; and the percentage value of Cd metal accumulation in Jatropha curcas. This experimental study was conducted using garden land; artificial Cd waste with concentration 5 ppm, 15 ppm, 25 ppm, 35 ppm and 45 ppm; and Atomic Absorption Spectrophotometer (AAS) for testing of heavy metal Cd onJatropha curcas. Data obtained from this research indicate that Cd effect on plant height and leaf area; the percentage value of contaminated soil reduction Cd is equal to 76-91%; Jatropha curcas has the ability toaccumulate Cd; and the percentage value of Cd metal accumulation in Jatropha curcas is 46-125 %.Key Words: : Heavy Metal Cd, Jatropha curcas Plant, Phytoremediation  


2019 ◽  
Vol 629 ◽  
pp. A148 ◽  
Author(s):  
M. Latour ◽  
M. Dorsch ◽  
U. Heber

The intermediate He-enriched hot subdwarf star Feige 46 was recently reported as the second member of the V366 Aqr (or He-sdOBV) pulsating class. Feige 46 is very similar to the prototype of the class, LS IV − 14°116, not only in terms of pulsational properties, but also in terms of atmospheric parameters and kinematic properties. LS IV − 14°116 is additionally characterized by a very peculiar chemical composition, with extreme overabundances of the trans-iron elements Ge, Sr, Y, and Zr. We investigate the possibility that the similarity between the two pulsators extends to their chemical composition. We retrieved archived optical and UV spectroscopic observations of Feige 46 and performed an abundance analysis using model atmospheres and synthetic spectra computed with TLUSTY and SYNSPEC. In total, we derived abundances for 16 elements and provide upper limits for four additional elements. Using absorption lines in the optical spectrum of the star we measure an enrichment of more than 10 000× solar for yttrium and zirconium. The UV spectrum revealed that strontium is equally enriched. Our results confirm that Feige 46 is not only a member of the now growing group of heavy metal subdwarfs, but also has an abundance pattern that is remarkably similar to that of LS IV − 14°116.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Peace Makuleke ◽  
Veronica M. Ngole-Jeme

Landfills are major sources of environmental pollution. This study evaluated heavy metal concentrations in soils and plants around the closed Lumberstewart landfill in Bulawayo, Zimbabwe, to determine the pollution potential of a closed landfill and the risks they present to plants growing in this environment and surrounding communities. Soil samples were collected at depths of 0–30 cm, 30–60 cm, and 60–90 cm around the landfill and at a control site and characterized for various properties and concentrations of Cd, Cu, Cr, Fe, Ni, and Zn. Samples of Datura stramonium, collected from the same sites where soil samples were collected, were also analyzed for the same heavy metals. The soils were sandy, mostly acidic (5.01 < pH < 7.65) with low organic matter content (<2%) and cation exchange capacity (<15 meq/100 g). These properties varied with depth around the landfill. Heavy metals concentrations in the soils and Datura stramonium followed the order Fe > Zn > Cu > Cr > Ni > Cd with samples from around the landfill having higher concentrations than samples from the control site. Soil heavy metal enrichment was highest at a depth of 30–60 cm. Pollution load index (PLI) values indicated that all sites around the landfill were polluted (PLI > 1). Heavy metal transfer coefficient in Datura stramonium ranged between 0.0 and 209 with <60% of the variation observed in heavy metal transfer coefficient in Datura stramonium explained by the extent of heavy metal enrichment in the soils. More than 20 years after closure of the landfill, there are indications that leachate migration may still be going on around the landfill. Monitoring of environments around closed landfills needs to be ongoing to mitigate negative impacts on humans and the environment.


Sign in / Sign up

Export Citation Format

Share Document