soil heavy metal
Recently Published Documents





2021 ◽  
Vol 13 (21) ◽  
pp. 12020
Bayan Nuralykyzy ◽  
Pan Wang ◽  
Xiaoqian Deng ◽  
Shaoshan An ◽  
Yimei Huang

Due to the unique geographical location and rapid development in the agricultural industry, heavy metals’ risk of soil contamination in the Qaidam Basin is gradually increasing. The following study was conducted to determine the soil heavy metal contents under different types of land use, contamination levels, and the physicochemical properties of soil. Soil samples were collected from facility lands, orchards, farmlands, and grasslands at 0–10 and 10–20 cm soil layers. Heavy metals including copper (Cu), chromium (Cr), nickel (Ni), zinc (Zn), lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg) were analyzed using inductively coupled plasma mass spectrometry and the soil was evaluated with different methods. Overall, the average Cu (25.07 mg/kg), Cr (45.67 mg/kg), Ni (25.56 mg/kg), Zn (71.24 mg/kg), Pb (14.19 mg/kg), Cd (0.17 mg/kg), As (12.54 mg/kg), and Hg (0.05 mg/kg) were lower than the environmental quality standard. However, the Cu, Cr, Ni, and As were highest in farmland, and Zn and Hg were highest in the facility land. The Pb content was highest in orchards, and the Cd content was the same in facility land, orchards, and farmland. Among the different land-use types, the soil heavy metal concentrations decreased in the order of facility land > farmland > grassland > orchards. The pH was alkaline, the content of SOC (soil organic carbon) 15.76 g/kg in grassland, TN (total nitrogen) 1.43 g/kg, and TP (total phosphorus) 0.97 g/kg in facility land showed the highest result. The soil BD (bulk density) had a significant positive correlation with Cu, Cr, Ni, Zn, Pb, Cd, and the TP positively correlated with Cu, Zn, Cd, and Hg. The soil evaluation results of the comprehensive pollution index indicated that the soil was in a clean condition. The index of potential environmental risk indicates that heavy metals are slightly harmful to the soil.

2021 ◽  
Wende Chen ◽  
Kun Zhu ◽  
Yankun Cai ◽  
Peihao Peng

Abstract In megacities, due to frequent human activities, large amounts of metals enter the soil indirectly or directly and eventually flow to people through the food chain. Therefore, the analysis and identification of soil heavy metal sources is an important part of revealing soil heavy metal pollution. The spatial content and potential sources of 11 heavy metals were analyzed from 342 surface soil samples collected from the central city of Chongqing in southwest China. The results showed that the main heavy metal elements under the first principal component loading were copper (Cu), nickel(Ni), zinc (Zn), manganese (Mn), cadmium (Cr), plumbum (Pb) and cadmium (Cd). The second principal component (F2) was mainly loaded with molybdenum (Mo), arsenic (As), mercury (Hg) and antimony (Sb), and the PCA-APCs receptor model of 11 heavy metals was constructed. The PCA-APCs receptor models of 11 heavy metals were constructed. The results of classification regression analysis confirmed the main sources of heavy metals. Population density mainly affected Cu (0.539), soil mainly affected Ni (0.411), Sb (0.493), Zn (0.472) and Mn (0.206), and water quality mainly affected As (0.453) and Mo (0.374). Air quality mainly affects Cd (0.332) and Cr (0.371), traffic activity mainly affects Hg (0.312), and slope mainly affects Pb (0.313). Hot spot analysis showed that heavy metals had a high degree of coincidence with environmental factors such as soil parent material, slope, soil type and traffic activities. The results of this study can be effectively used to make scientific decisions and strategies, and an effective strategy for prevention and control of soil heavy metal pollution should be formulated to protect the urban soil environmental quality.

Sign in / Sign up

Export Citation Format

Share Document