scholarly journals Plant functional type mapping for earth system models

2011 ◽  
Vol 4 (4) ◽  
pp. 993-1010 ◽  
Author(s):  
B. Poulter ◽  
P. Ciais ◽  
E. Hodson ◽  
H. Lischke ◽  
F. Maignan ◽  
...  

Abstract. The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into usually only 10–20 classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (ß) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30% (20%) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of PFT datasets that are consistent with current satellite products and adapted for earth system models is an important component for reducing the uncertainty of terrestrial biogeochemistry to climate variability.

2011 ◽  
Vol 4 (3) ◽  
pp. 2081-2121 ◽  
Author(s):  
B. Poulter ◽  
P. Ciais ◽  
E. Hodson ◽  
H. Lischke ◽  
F. Maignan ◽  
...  

Abstract. The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into just several classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (β) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30 % (20 %) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of plant functional type datasets that are consistent with current satellite products and adapted for earth system models is an important component for reducing the uncertainty of terrestrial biogeochemistry to climate variability.


2019 ◽  
Vol 11 (18) ◽  
pp. 2177
Author(s):  
Jean-Christophe Calvet ◽  
Patricia de Rosnay ◽  
Stephen G. Penny

This Special Issue is a collection of papers reporting research on various aspects of coupled data assimilation in Earth system models. It includes contributions presenting recent progress in ocean–atmosphere, land–atmosphere, and soil–vegetation data assimilation.


2021 ◽  
Vol 17 (1) ◽  
pp. 12-26
Author(s):  
A.F. Chukwuka ◽  
A. Alo ◽  
O.J. Aigbokhan

This study set out to assess the dynamic characteristics of the Ikere forest reserve landscape between 1985 and 2017 using remote sensing data and spatial metrics. Landscape of the study area maintained complex patterns of spatial heterogeneity over the years. Forest cover loss to other land cover types results in new large non-forest area at increasing rate. As at the year 2017, the changes in land cover types were not yet at equilibrium, thus the need to determine the future forest cover extent using a three-way markov Chain model. The decrease in number of patches of forest land (NumP) with increase in its mean patch size (MPS) shows that the forest is becoming a single unit probably due to clearing of existing patches of forest trees. The decrease in class diversity and evenness (SDI and SEI) of the general landscape over the years strengthens this assertion. The findings of this study would be very helpful to government and other stakeholders responsible for ensuring sustainable forest and general environment. Keyword: Landscape, Spatial metrics, sustainable forest and Environment


2019 ◽  
Vol 75 ◽  
pp. 02005
Author(s):  
Elena Fedotova

The current state of the land cover has been estimated in the territories where in different years (1885, 1955, 1995) the forests were damaged by Siberian silkmoth. Dark-needle taiga is restored through the change of tree species. In 20 years in areas of dark-needle taiga there are graminoid communities, in 60 years we have deciduous forests there, and in 130 - dark needle forests, but not everywhere.


2013 ◽  
Vol 6 (1) ◽  
pp. 255-296
Author(s):  
C. Ottlé ◽  
J. Lescure ◽  
F. Maignan ◽  
B. Poulter ◽  
T. Wang ◽  
...  

Abstract. High-latitude ecosystems play an important role in the global carbon cycle and in regulating the climate system and are presently undergoing rapid environmental change. Accurate land cover datasets are required to both document these changes as well as to provide land-surface information for benchmarking and initializing earth system models. Earth system models also require specific land cover classification systems based on plant functional types, rather than species or ecosystems, and so post-processing of existing land cover data is often required. This study compares over Siberia, multiple land cover datasets against one another and with auxiliary data to identify key uncertainties that contribute to variability in Plant Functional Type (PFT) classifications that would introduce errors in earth system modeling. Land cover classification systems from GLC 2000, GlobCover 2005 and 2009, and MODIS collections 5 and 5.1 are first aggregated to a common legend, and then compared to high-resolution land cover classification systems, continuous vegetation fields (MODIS-VCF) and satellite-derived tree heights (to discriminate against sparse, shrub, and forest vegetation). The GlobCover dataset, with a lower threshold for tree cover and taller tree heights and a better spatial resolution, tends to have better distributions of tree cover compared to high-resolution data. It has therefore been chosen to build new PFTs maps for the ORCHIDEE land surface model at 1 km scale. Compared to the original PFT dataset, the new PFT maps based on GlobCover 2005 and an updated cross-walking approach mainly differ in the characterization of forests and degree of tree cover. The partition of grasslands and bare soils now appears more realistic compared with ground-truth data. This new vegetation map provides a framework for further development of new PFTs in the ORCHIDEE model like shrubs, lichens and mosses, to better represent the water and carbon cycles in northern latitudes. Updated land cover datasets are critical for improving and maintaining the relevance of earth system models for assessing climate and human impacts on biogeochemistry and biophysics. The new PFT map at 5 km scale is available for download from the PANGAEA website, at: doi:10.1594/PANGAEA.810709.


2020 ◽  
Author(s):  
Julia K. Green ◽  
Pierre Gentine ◽  
Yao Zhang ◽  
Joe Berry ◽  
Philippe Ciais

<p>Earth system models predict that atmospheric dryness reduces photosynthesis due to its reductive effect on stomatal conductance. However, while this representation may be appropriate in many environments, in the wet Amazonian tropical rainforest, this is not the case. Using remote sensing data combined with machine learning techniques (k-means clustering and artificial neural networks), we show that in the wettest parts of the Amazon rainforest, gross primary production and evapotranspiration continue to increase alongside atmospheric dryness, i.e. vapor pressure deficit, despite reductions in ecosystem conductance. On the other hand, Earth system models have the opposite photosynthetic response to vapor pressure deficit in the wettest part of the Amazon, overestimating its reductive effect on tropical vegetation photosynthesis and evapotranspiration, leading to an exaggerated carbon source to the atmosphere. As vapor pressure deficit is expected to increase with climate change, our study highlights the importance of reframing how we understand and represent the response of ecosystem photosynthesis to atmospheric dryness in the wettest ecosystems, to accurately quantify the future land carbon sink and atmospheric CO2 growth rate.</p>


2021 ◽  
Author(s):  
Kerstin Fieg ◽  
Mojib Latif ◽  
Michael Schulz ◽  
Tatjana Ilyina

<p>We present new insights from the project PalMod, which started in 2016 and is envisioned to run for a decade. The modelling initiative PalMod aims at filling the long-standing scientific gaps in our understanding of the dynamics and variability of the climate system during the last glacial-interglacial cycle. One of the grand challenges in this context is to quantify the processes that determine the spectrum of climate variability on timescales that range from seasons to millennia. Climatic processes are intimately coupled across these timescales. Understanding variability at any one timescale requires understanding of the whole spectrum. If we could successfully simulate the spectrum of climate variability during the last glacial cycle in Earth system models, would this enable us to more reliably assess the future climate change? Such simulations are necessary to deduce, for example, if a regime shift in climate variability could occur during the next centuries and millennia in response to global warming. PalMod is specifically designed to enhance our understanding of the Earth system dynamics and its variability on timescales up to the multimillennial with complex Earth System Models.</p><p>The following major goals were achieved up to now:</p><ul><li>Full coupling of atmosphere, ocean and ice-sheet models, enabling investigation of Heinrich Events and bi-stability of the AMOC, and millennial-scale transient climate-ice sheet simulations.</li> <li>Implementation of a coupled ocean and land biogeochemistry enabling simulations with prognostic atmospheric CO<sub>2</sub> concentrations and including improved representation of methane (CH<sub>4</sub>) in transient deglaciation runs.</li> <li>Systematic comparison of newly compiled proxy data with model simulations.</li> </ul><p>The major goal for the next two years is to set up the fully coupled physical-biogeochemical model which will be tested for three time periods: deglaciation, glacial inception and Marine Isotope Stage 3 (MIS3). This fully coupled model will be eventually used to simulate the complete glacial cycle and project the climate over the next few millennia.</p>


Sign in / Sign up

Export Citation Format

Share Document