Effects Of Solid State Fermentation By Aspergillus niger and Rhizopus spp. On The Nutritional Value Of Cassava Peels

Author(s):  
KD Afolabi ◽  
EA Iyayi ◽  
AO Abu
2015 ◽  
Vol 28 (3) ◽  
pp. 248-254 ◽  
Author(s):  
TAMIRES CARVALHO DO SANTOS ◽  
GLEIZA ALVES DINIZ ◽  
AILA RIANY DE BRITO ◽  
AURELIANO JOSÉ VIEIRA PIRES ◽  
MARCELO FRANCO

ABSTRACT: The process of protein enrichment of cactus pear (Nopalea cochenillifera (L.) Salm Dyck by solid state fermentation with the use of Aspergillus niger and Rhyzopus sp. was studied for improving the nutritional value of this cactus species for use as animal feed. The experiments were conducted in the Agro-industrial Waste Laboratory of State University of Southwest Bahia (Brazil). To this end, we have evaluated the effects of biotransformation on the levels of protein, cellulose, hemicellulose, and lignin, as well as the potential degradability. Bioconversion was carried out using cactus pear as the only substrate, without supplementation with nitrogen, mineral and vitamin sources. The fermentation with Aspergillus niger promoted a 78% increase in/of protein content and reductions of cellulose, hemicellulose, and lignin of 40%, 36%, and 28%, respectively. Degradability, in turn, was observed to have increased by 66 % after 240 h. On the other hand, the fermentation with Rhyzopus sp. was less efficient, with a 69% increase in protein content, and reductions in cellulose, hemicellulose, and lignin contents of 30%, 28%, and 18%. In turn, degradability was seen to have increased by 51%. The fermentation of cactus pear by Aspergillus niger and Rhyzopus sp. exhibited the protein enrichment and increased protein degradability of this Cactaceae. Moreover, this is the most ever efficient micro-organism used in bioconversion. Based on the results, bioconversion of cactus is an excellent alternative to ruminant feeding in arid or semi-arid land.


2016 ◽  
Vol 1 ◽  
pp. 79 ◽  
Author(s):  
Mario Molina ◽  
Otto Raúl Lechuga ◽  
Ricardo Bressani

Coffee pulp was subjected to a solid-state fermentation process using Aspergillus niger, an Initial moisture content of 80%, pH 3.5,35°C and adding 2.5% commercial urea and 2.0% commercial dicalcium phosphate, for a total of 48 h. The sundried fermented material proved to have a significantly (P<0.05) lower polyphenolic, caffeine and fiber content than the original sun-dried coffee pulp. Further, the true protein content of the fermented material (18%) was significantly (P<0.01) higher than that of the original material (5%). When the pulp was included at a 5, 10 and 15% levels In growing chicken rations It was found that after six weeks the ration containing 15% of the fermented pulp presented a weight gain (1.43 kg) and a feed efficiency (2.20) significantly equal to the control ration (without pulp) and better (P<0.05) than the ration containing the sundried, unfermented pulp at 15 % (1.19 kg and 2.55, respectively). In the case of growing swine fed with rations containing either fermented or unfermented pulp at 20% level for 8 weeks the results were similar to those obtained In the chicken experiment. It is concluded that solid-state fermentation represents a viable technological alternative to improve the nutritional value of coffee pulp.


2021 ◽  
Vol 9 (5) ◽  
pp. 895
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Fabjola Bilo ◽  
Laura Borgese ◽  
Alessandra Gianoncelli ◽  
...  

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.


2011 ◽  
Vol 54 (3) ◽  
pp. 559-568 ◽  
Author(s):  
Christiane Trevisan Slivinski ◽  
Alex Vinicius Lopes Machado ◽  
Jorge Iulek ◽  
Ricardo Antônio Ayub ◽  
Mareci Mendes de Almeida

BioResources ◽  
2014 ◽  
Vol 9 (4) ◽  
Author(s):  
Valesca Weingartner Montibeller ◽  
Luciana Porto de Souza Vandenberghe ◽  
Antonella Amore ◽  
Carlos Ricardo Soccol ◽  
Leila Birolo ◽  
...  

2016 ◽  
Vol 29 (1) ◽  
pp. 222-233 ◽  
Author(s):  
TAMIRES CARVALHO DOS SANTOS ◽  
GEORGE ABREU FILHO ◽  
AILA RIANY DE BRITO ◽  
AURELIANO JOSÉ VIEIRA PIRES ◽  
RENATA CRISTINA FERREIRA BONOMO ◽  
...  

ABSTRACT: Prickly palm cactus husk was used as a solid-state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box-Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp. Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.


Author(s):  
MARIA ALICE ZARUR COELHO ◽  
SELMA GOMES FERREIRA LEITE ◽  
MORSYLEIDE DE FREITAS ROSA ◽  
ANGELA APARECIDA LEMOS FURTADO

Investigou-se o aproveitamento da casca do coco verde, mediante fermentação semisólida, para produção de enzimas. A casca de coco foi previamente desidratada, moída e classificada em três diferentes granulometrias, ou seja, 14, 28 e 32 mesh Tyler. Todas as enzimas obtidas tiveram sua produção máxima na faixa de 24 e 96 horas, o que corresponde ao tempo de produção industrial corrente. Cada granulometria produziu complexos enzimáticos ricos em diferentes atividades. O estudo realizado validou a hipótese do aproveitamento do resíduo da casca do coco verde na produção de enzimas por Aspergillus niger. Abstract The utilization of immature coconut peel as substrate for enzyme production by solid state fermentation was investigated. The coconut peel was previously dehydrated, milled and classified in three distinct granulometries: 14, 28 and 32 mesh Tyler. All the enzymes obtained had its maximum production in 24 to 96 hour interval, which correspond to the current industrial production time. Each granulometry produced rich enzymatic complexes with different activities. This study validates the hypothesis of benefit immature coconut peel as raw material for enzyme production by Aspergillus niger.


Sign in / Sign up

Export Citation Format

Share Document