scholarly journals Nonintrusive Method for Induction Motor Equivalent Circuit Parameter Estimation using Chicken Swarm Optimization (CSO) Algorithm

2021 ◽  
Vol 18 (1) ◽  
pp. 21-29
Author(s):  
M. Aminu ◽  
M. Abana ◽  
S.W. Pallam ◽  
P.K. Ainah

This paper presents a nonintrusive method for estimating the parameters of an Induction Motor (IM) without the need for the conventional no-load and locked rotor tests. The method is based on a relatively new swarm-based algorithm called the Chicken Swarm Optimization (CSO). Two different equivalent circuits implementations have been considered for the parameter estimation scheme (one with parallel and the other with series magnetization circuit). The proposed parameter estimation method was validated experimentally on a standard 7.5 kW induction motor and the results were compared to those obtained using the IEEE Std. 112 reduced voltage impedance test method 3. The proposed CSO optimization method gave accurate estimates of the IM equivalent circuit parameters with maximum absolute errors of 5.4618% and 0.9285% for the parallel and series equivalent circuits representations respectively when compared to the IEEE Std. 112 results. However, standard deviation results in terms of the magnetization branch parameters, suggest that the series equivalent circuit model gives more repeatable results when compared to the parallel equivalent circuit. Keywords: Induction motor, Chicken Swarm Optimization, parameter estimation, equivalent circuit, objective function

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Reza Mohammadi ◽  
Ali Akhavan

A cost effective off-line method for equivalent circuit parameter estimation of an induction motor using hybrid of genetic algorithm and particle swarm optimization (HGAPSO) is proposed. The HGAPSO inherits the advantages of both genetic algorithm (GA) and particle swarm optimization (PSO). The parameter estimation methodology describes a method for estimating the steady-state equivalent circuit parameters from the motor performance characteristics, which is normally available from the nameplate data or experimental tests. In this paper, the problem formulation uses the starting torque, the full load torque, the maximum torque, and the full load power factor which are normally available from the manufacturer data. The proposed method is used to estimate the stator and rotor resistances, the stator and rotor leakage reactances, and the magnetizing reactance in the steady-state equivalent circuit. The optimization problem is formulated to minimize an objective function containing the error between the estimated and the manufacturer data. The validity of the proposed method is demonstrated for a preset model of induction motor in MATLAB/Simulink. Also, the performance evaluation of the proposed method is carried out by comparison between the results of the HGAPSO, GA, and PSO.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Shaolong Chen ◽  
Renyu Yang ◽  
Renhuan Yang ◽  
Liu Yang ◽  
Xiuzeng Yang ◽  
...  

Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO) has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO) is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.


Batteries ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 32
Author(s):  
S M Rakiul Islam ◽  
Sung-Yeul Park ◽  
Balakumar Balasingam

Internal resistance is one of the important parameters in the Li-Ion battery. This paper identifies it using two different methods: electrochemical impedance spectroscopy (EIS) and parameter estimation based on equivalent circuit model (ECM). Comparing internal resistance, the conventional parameter estimation method yields a different value than EIS. Therefore, a hysteresis-free parameter identification method based on ECM is proposed. The proposed technique separates hysteresis resistance from the effective resistance. It precisely estimated actual internal resistance, which matches the internal resistance obtained from EIS. In addition, state of charge, open circuit voltage, and different internal equivalent circuit components were identified. The least square method was used to identify the parameters based on ECM. A parameter extraction algorithm to interpret impedance spectrum obtained from the EIS. The algorithm is based on the properties of Nyquist plot, phasor algebra, and resonances. Experiments were conducted using a cellphone pouch battery and a cylindrical 18650 battery.


2019 ◽  
Vol 9 (11) ◽  
pp. 2191
Author(s):  
Haichao Feng ◽  
Jikai Si ◽  
Wei Wu ◽  
Lianghui Dong ◽  
Zhiping Cheng

In this paper, a modified equivalent circuit model (ECM), which considers the effects of an arc-shaped stator structure and saturation, is presented to calculate the characteristics of a two-degree-of-freedom direct drive induction motor (2DoFDDIM). The motor has a novel slotted solid rotor (SSR), which is slotted along the axial and circumferential directions, and copper is cast in the slots. The SSR is equivalent to a cage rotor by analyzing the current distribution using the circuit diagram. The corrected ECM parameter expressions of a cage rotor are proposed to calculate the SSR parameters. The characteristics obtained by ECM and finite element method are compared to verify the accuracy of the modified ECM. This paper provides reference for calculating the parameters of the induction motor with SSR.


Sign in / Sign up

Export Citation Format

Share Document