scholarly journals Water Physico-Chemical Characteristics of the Lakes Burera and Ruhondo, Rwanda

Author(s):  
Valens Habimana ◽  
Antoine Nsabimana

Rwanda possesses multiple lakes, whose properties were rarely described. The present study assessed physico-chemical characteristics of water in Burera and Ruhondo lakes located in highly populated area with steep slopes, which are under extensive agriculture, thus water quality monitoring is important. Both lakes were alkaline with high content of Mg, while Ruhondo had higher electrical conductivity than Burera. Phosphorus and nitrogen exceeded Class III EPA standards indicating that both lakes are at risk of eutrophication. Keywords: water quality, lakes Burera and Ruhondo, Rwanda

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3758
Author(s):  
Hsing-Cheng Yu ◽  
Ming-Yang Tsai ◽  
Yuan-Chih Tsai ◽  
Jhih-Jyun You ◽  
Chun-Lin Cheng ◽  
...  

Recently, environmental pollution resulting from industrial waste has been emerging in an endless stream. The industrial waste contains chemical materials, heavy metal ions, and other toxic materials. Once the industrial waste is discharged without standards, it might lead to water or environmental pollution. Hence, it has become more important to provide evidence-based water quality monitoring. The use of a multifunctional miniaturized water quality monitoring system (WQMS), that contains continuous monitoring, water quality monitoring, and wireless communication applications, simultaneously, is infrequent. Thus, electrodes integrated with polydimethylsiloxane flow channels were presented in this study to be a compound sensor, and the sensor can be adopted concurrently to measure temperature, pH, electrical conductivity, and copper ion concentration, whose sensitivities are determined as 0.0193 °C/mV, −0.0642 pH/mV, 1.1008 mS/V·cm (from 0 mS/cm to 2 mS/cm) and 1.1975 mS/V·cm (from 2 mS/cm to 5.07 mS/cm), and 0.0111 ppm/mV, respectively. A LoRa shield connected into the system could provide support as a node of long range wide area network (LoRaWAN) for wireless communication application. As mentioned above, the sensors, LoRa, and circuit have been integrated in this study to a continuous monitoring system, WQMS. The advantages of the multifunctional miniaturized WQMS are low cost, small size, easy maintenance, continuous sampling and long-term monitoring for many days. Every tested period is 180 min, and the measured rate is 5 times per 20 min. The feedback signals of the miniaturized WQMS and measured values of the instrument were obtained to compare the difference. In the measured results at three different place-to-place locations the errors of electrical conductivity are 0.051 mS/cm, 0.106 mS/cm, and 0.092 mS/cm, respectively. The errors of pH are 0.68, 0.87, and 0.56, respectively. The errors of temperature are 0.311 °C, 0.252 °C, and 0.304 °C, respectively. The errors of copper ion concentration are 0.051 ppm, 0.058 ppm, 0.050 ppm, respectively.


Author(s):  
Jessa Marie S. Caabay S. Caabay

Water quality monitoring activities is a vital part in assessing the status of certain bodies of water such as the Laguna de Bay. The lake has been a significant natural resource as a catchment of an expansive watershed providing various ecological and economic values. It is the largest inland water body in the Philippines and the third largest in South East Asia. Water quality monitoring network is a critical element in the assessment, restoration and protection of Laguna de Bay. This paper measured some important physico-chemical properties of four selected sites from Laguna de Bay such as temperature, pH, electrical conductivity, alkalinity, dissolved oxygen levels, and phosphate and ammonia concentrations. Water Quality Index (WQI) utilizing Weighted Arithmetic Water Quality Index Method was also evaluated.


2022 ◽  
pp. 51-70
Author(s):  
Shahid Ahmad Dar ◽  
Sami Ullah Bhat ◽  
Sajad Ahmad Dar

Water quality monitoring is an important tool in determining the safety and suitability of water for various desired and intended uses. The procedures involved in the evaluation of water quality are numerous and multifaceted. Therefore, taking into consideration the specific objectives of water quality monitoring, sampling design is of vital importance. Most of the physical parameters of water quality are determined via in-situ measurements using modern testing equipment/field testing kits. Although there are some good field-based sensors that are being used for evaluation of water quality, the chemical parameters traditionally are mostly analyzed through laboratory-based experiments. This chapter is aimed to offer an inclusive knowledge and insights on the importance and assessment of physico-chemical parameters that are of high priority for monitoring the water quality of wetlands.


2014 ◽  
Vol 1030-1032 ◽  
pp. 657-660
Author(s):  
Yu Feng Xie ◽  
Ya Zhang ◽  
Wan Jing Wang ◽  
Wen Jing Li

This paper employed the water quality monitoring data of Nanfei River to analyze the water pollution status, and to contrast the water quality change of the river section which has been dredged. We selected TN, TP, COD and NH3-N as the evaluation factors to study the spatial distribution. Results showed that TN concentration was seriously higher than the upper limit of surface water standard class V, and TP and COD values were in class V, and NH3-N concentration was in class III. Refer to previous water quality monitoring data, dredging projects of Nanfei River worked significantly on TP, COD and NH3-N removal, while TN concentration was 5 times more than before.


2013 ◽  
Vol 133 (8) ◽  
pp. 1616-1624
Author(s):  
Zu Soh ◽  
Kentaro Miyamoto ◽  
Akira Hirano ◽  
Toshio Tsuji

2016 ◽  
Vol 15 (5) ◽  
pp. 1069-1074 ◽  
Author(s):  
Violeta-Monica Radu ◽  
Alexandru Anton Ivanov ◽  
Petra Ionescu ◽  
Gyorgy Deak ◽  
Marian Tudor

Sign in / Sign up

Export Citation Format

Share Document