scholarly journals Remote sensing object-oriented approaches coupled with ecological informatics to map invasive plant species

2016 ◽  
Vol 5 (3) ◽  
pp. 285
Author(s):  
Sanjay Gairola ◽  
Şerban Procheş ◽  
Michael T. Gebreslasie ◽  
Duccio Rocchini
Author(s):  
Jana Müllerová ◽  
Josef Brůna ◽  
Petr Dvořák ◽  
Tomáš Bartaloš ◽  
Michaela Vítková

Invasive plant species represent a serious threat to biodiversity and landscape as well as human health and socio-economy. To successfully fight plant invasions, new methods enabling fast and efficient monitoring, such as remote sensing, are needed. In an ongoing project, optical remote sensing (RS) data of different origin (satellite, aerial and UAV), spectral (panchromatic, multispectral and color), spatial (very high to medium) and temporal resolution, and various technical approaches (object-, pixelbased and combined) are tested to choose the best strategies for monitoring of four invasive plant species (giant hogweed, black locust, tree of heaven and exotic knotweeds). In our study, we address trade-offs between spectral, spatial and temporal resolutions required for balance between the precision of detection and economic feasibility. For the best results, it is necessary to choose best combination of spatial and spectral resolution and phenological stage of the plant in focus. For species forming distinct inflorescences such as giant hogweed iterative semi-automated object-oriented approach was successfully applied even for low spectral resolution data (if pixel size was sufficient) whereas for lower spatial resolution satellite imagery or less distinct species with complicated architecture such as knotweed, combination of pixel and object based approaches was used. High accuracies achieved for very high resolution data indicate the possible application of described methodology for monitoring invasions and their long-term dynamics elsewhere, making management measures comparably precise, fast and efficient. This knowledge serves as a basis for prediction, monitoring and prioritization of management targets.


Author(s):  
Jana Müllerová ◽  
Josef Brůna ◽  
Petr Dvořák ◽  
Tomáš Bartaloš ◽  
Michaela Vítková

Invasive plant species represent a serious threat to biodiversity and landscape as well as human health and socio-economy. To successfully fight plant invasions, new methods enabling fast and efficient monitoring, such as remote sensing, are needed. In an ongoing project, optical remote sensing (RS) data of different origin (satellite, aerial and UAV), spectral (panchromatic, multispectral and color), spatial (very high to medium) and temporal resolution, and various technical approaches (object-, pixelbased and combined) are tested to choose the best strategies for monitoring of four invasive plant species (giant hogweed, black locust, tree of heaven and exotic knotweeds). In our study, we address trade-offs between spectral, spatial and temporal resolutions required for balance between the precision of detection and economic feasibility. For the best results, it is necessary to choose best combination of spatial and spectral resolution and phenological stage of the plant in focus. For species forming distinct inflorescences such as giant hogweed iterative semi-automated object-oriented approach was successfully applied even for low spectral resolution data (if pixel size was sufficient) whereas for lower spatial resolution satellite imagery or less distinct species with complicated architecture such as knotweed, combination of pixel and object based approaches was used. High accuracies achieved for very high resolution data indicate the possible application of described methodology for monitoring invasions and their long-term dynamics elsewhere, making management measures comparably precise, fast and efficient. This knowledge serves as a basis for prediction, monitoring and prioritization of management targets.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Levente Papp ◽  
Boudewijn van Leeuwen ◽  
Péter Szilassi ◽  
Zalán Tobak ◽  
József Szatmári ◽  
...  

The species richness and biodiversity of vegetation in Hungary are increasingly threatened by invasive plant species brought in from other continents and foreign ecosystems. These invasive plant species have spread aggressively in the natural and semi-natural habitats of Europe. Common milkweed (Asclepias syriaca) is one of the species that pose the greatest ecological menace. Therefore, the primary purpose of the present study is to map and monitor the spread of common milkweed, the most common invasive plant species in Europe. Furthermore, the possibilities to detect and validate this special invasive plant by analyzing hyperspectral remote sensing data were investigated. In combination with field reference data, high-resolution hyperspectral aerial images acquired by an unmanned aerial vehicle (UAV) platform in 138 spectral bands in areas infected by common milkweed were examined. Then, support vector machine (SVM) and artificial neural network (ANN) classification algorithms were applied to the highly accurate field reference data. As a result, common milkweed individuals were distinguished in hyperspectral images, achieving an overall accuracy of 92.95% in the case of supervised SVM classification. Using the ANN model, an overall accuracy of 99.61% was achieved. To evaluate the proposed approach, two experimental tests were conducted, and in both cases, we managed to distinguish the individual specimens within the large variety of spreading invasive species in a study area of 2 ha, based on centimeter spatial resolution hyperspectral UAV imagery.


2019 ◽  
Vol 112 ◽  
pp. 237-245 ◽  
Author(s):  
Lwando Royimani ◽  
Onisimo Mutanga ◽  
John Odindi ◽  
Timothy Dube ◽  
Trylee Nyasha Matongera

2021 ◽  
Author(s):  
Johanna Yletyinen ◽  
George L. W. Perry ◽  
Olivia R. Burge ◽  
Norman W. H. Mason ◽  
Philip Stahlmann‐Brown

Sign in / Sign up

Export Citation Format

Share Document