scholarly journals A modified version of the SMAR model for estimating root-zone soil moisture from time-series of surface soil moisture

Water SA ◽  
2017 ◽  
Vol 43 (3) ◽  
pp. 492 ◽  
Author(s):  
Farid Faridani ◽  
Alireza Farid ◽  
Hossein Ansari ◽  
Salvatore Manfreda
2021 ◽  
Author(s):  
Anna Balenzano ◽  
Giuseppe Satalino ◽  
Francesco Lovergine ◽  
Davide Palmisano ◽  
Francesco Mattia ◽  
...  

<p>One of the limitations of presently available Synthetic Aperture Radar (SAR) surface soil moisture (SSM) products is their moderated temporal resolution (e.g., 3-4 days) that is non optimal for several applications, as most user requirements point to a temporal resolution of 1-2 days or less. A possible path to tackle this issue is to coordinate multi-mission SAR acquisitions with a view to the future Copernicus Sentinel-1 (C&D and Next Generation) and L-band Radar Observation System for Europe (ROSE-L).</p><p>In this respect, the recent agreement between the Japanese (JAXA) and European (ESA) Space Agencies on the use of SAR Satellites in Earth Science and Applications provides a framework to develop and validate multi-frequency and multi-platform SAR SSM products. In 2019 and 2020, to support insights on the interoperability between C- and L-band SAR observations for SSM retrieval, Sentinel-1 and ALOS-2 systematic acquisitions over the TERENO (Terrestrial Environmental Observatories) Selhausen (Germany) and Apulian Tavoliere (Italy) cal/val sites were gathered. Both sites are well documented and equipped with hydrologic networks.</p><p>The objective of this study is to investigate the integration of multi-frequency SAR measurements for a consistent and harmonized SSM retrieval throughout the error characterization of a combined C- and L-band SSM product. To this scope, time series of Sentinel-1 IW and ALOS-2 FBD data acquired over the two sites will be analysed. The short time change detection (STCD) algorithm, developed, implemented and recently assessed on Sentinel-1 data [e.g., Balenzano et al., 2020; Mattia et al., 2020], will be tailored to the ALOS-2 data. Then, the time series of SAR SSM maps from each SAR system will be derived separately and aggregated in an interleaved SSM product. Furthermore, it will be compared against in situ SSM data systematically acquired by the ground stations deployed at both sites. The study will assess the interleaved SSM product and evaluate the homogeneous quality of C- and L-band SAR SSM maps.</p><p> </p><p> </p><p>References</p><p>Balenzano. A., et al., “Sentinel-1 soil moisture at 1km resolution: a validation study”, submitted to Remote Sensing of Environment (2020).</p><p>Mattia, F., A. Balenzano, G. Satalino, F. Lovergine, A. Loew, et al., “ESA SEOM Land project on Exploitation of Sentinel-1 for Surface Soil Moisture Retrieval at High Resolution,” final report, contract number 4000118762/16/I-NB, 2020.</p>


2016 ◽  
Vol 20 (12) ◽  
pp. 4895-4911 ◽  
Author(s):  
Gabriëlle J. M. De Lannoy ◽  
Rolf H. Reichle

Abstract. Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40° incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.


2008 ◽  
Vol 12 (6) ◽  
pp. 1323-1337 ◽  
Author(s):  
C. Albergel ◽  
C. Rüdiger ◽  
T. Pellarin ◽  
J.-C. Calvet ◽  
N. Fritz ◽  
...  

Abstract. A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content), the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.


2015 ◽  
Vol 19 (12) ◽  
pp. 4831-4844 ◽  
Author(s):  
C. Draper ◽  
R. Reichle

Abstract. A 9 year record of Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) soil moisture retrievals are assimilated into the Catchment land surface model at four locations in the US. The assimilation is evaluated using the unbiased mean square error (ubMSE) relative to watershed-scale in situ observations, with the ubMSE separated into contributions from the subseasonal (SMshort), mean seasonal (SMseas), and inter-annual (SMlong) soil moisture dynamics. For near-surface soil moisture, the average ubMSE for Catchment without assimilation was (1.8 × 10−3 m3 m−3)2, of which 19 % was in SMlong, 26 % in SMseas, and 55 % in SMshort. The AMSR-E assimilation significantly reduced the total ubMSE at every site, with an average reduction of 33 %. Of this ubMSE reduction, 37 % occurred in SMlong, 24 % in SMseas, and 38 % in SMshort. For root-zone soil moisture, in situ observations were available at one site only, and the near-surface and root-zone results were very similar at this site. These results suggest that, in addition to the well-reported improvements in SMshort, assimilating a sufficiently long soil moisture data record can also improve the model representation of important long-term events, such as droughts. The improved agreement between the modeled and in situ SMseas is harder to interpret, given that mean seasonal cycle errors are systematic, and systematic errors are not typically targeted by (bias-blind) data assimilation. Finally, the use of 1-year subsets of the AMSR-E and Catchment soil moisture for estimating the observation-bias correction (rescaling) parameters is investigated. It is concluded that when only 1 year of data are available, the associated uncertainty in the rescaling parameters should not greatly reduce the average benefit gained from data assimilation, although locally and in extreme years there is a risk of increased errors.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3109
Author(s):  
Roïya Souissi ◽  
Ahmad Al Bitar ◽  
Mehrez Zribi

This paper explores the accuracy in using an artificial neural network (ANN) to estimate root-zone soil moisture (RZSM) at multiple worldwide locations using only in situ surface soil moisture (SSM) as a training dataset. The paper also addresses the transferability of the trained ANN across climatic and soil texture conditions. Data from the International Soil Moisture Network (ISMN) were collected for several networks with variable soil texture and climate classes. Several scaling, feature extraction, and training approaches were tested. An artificial neural network employing rolling averages (ANNRAV) of SSM over 10, 30, and 90 days was developed. The results show that applying a standard scaling (SSCA) to the ANN input features improves the correlation, Nash–Sutcliffe efficiency (NSE), and root mean square error (RMSE) for 52%, 91%, and 87%, respectively, of the tested stations, compared to MinMax scaling (MMSCA). Different training sets are suggested, namely, training on data from all networks, data from one network, or data of all networks excluding one. Based on these trainings, new transferability (TranI) and contribution (ContI) indices are defined. The results show that one network cannot provide the best prediction accuracy if used alone to train the ANN. They also show that the removal of the less contributing networks enhances performance. For example, elimination of the densest network (SCAN) from the training enhances the mean correlation by 20.5% and the mean NSE by 42.5%. This motivates the implementation of a data filtering technique based on the ANN’s performance. A median, max, and min correlation of 0.77, 0.96, and 0.65, respectively, are obtained by the model after data filtering. The performances are also analyzed with respect to the covered climatic regions and soil texture, providing insights into the robustness and limitations of the approach, namely, the need for complementary information in highly evaporative regions. In fact, the ANN using only SSM to predict RZSM has low performance when decoupling between the surface and root zones is observed. The application of ANN to obtain spatialized RZSM will require integrating remote sensing-based surface soil moisture in the future.


2007 ◽  
Vol 8 (2) ◽  
pp. 194-206 ◽  
Author(s):  
Joaquín Muñoz Sabater ◽  
Lionel Jarlan ◽  
Jean-Christophe Calvet ◽  
François Bouyssel ◽  
Patricia De Rosnay

Abstract Root-zone soil moisture constitutes an important variable for hydrological and weather forecast models. Microwave radiometers like the L-band instrument on board the European Space Agency’s (ESA) future Soil Moisture and Ocean Salinity (SMOS) mission are being designed to provide estimates of near-surface soil moisture (0–5 cm). This quantity is physically related to root-zone soil moisture through diffusion processes, and both surface and root-zone soil layers are commonly simulated by land surface models (LSMs). Observed time series of surface soil moisture may be used to analyze the root-zone soil moisture using data assimilation systems. In this paper, various assimilation techniques derived from Kalman filters (KFs) and variational methods (VAR) are implemented and tested. The objective is to correct the modeled root-zone soil moisture deficiencies of the newest version of the Interaction between Soil, Biosphere, and Atmosphere scheme (ISBA) LSM, using the observations of the surface soil moisture of the Surface Monitoring of the Soil Reservoir Experiment (SMOSREX) over a 4-yr period (2001–04). This time period includes contrasting climatic conditions. Among the different algorithms, the ensemble Kalman filter (EnKF) and a simplified one-dimensional variational data assimilation (1DVAR) show the best performances. The lower computational cost of the 1DVAR is an advantage for operational root-zone soil moisture analysis based on remotely sensed surface soil moisture observations at a global scale.


Sign in / Sign up

Export Citation Format

Share Document