Effects of Phosphate Solutions on Aflatoxin Production in a Synthetic Medium and in Frankfurters†

1996 ◽  
Vol 59 (6) ◽  
pp. 626-630 ◽  
Author(s):  
S. KOTINEK MARSH ◽  
D. J. MYERS ◽  
H. M. STAHR

Mold growth, sporulation, and aflatoxin B1 and G1 production were studied in Sabouraud dextrose agar (SDA) and frankfurters inoculated with Aspergillus flavus or Aspergillus parasiticus. Each of four phosphates, sodium polyphosphate glassy (SPG), sodium acid pyrophosphate (SAPP), tetrasodium pyrophosphate (TSPP), and Brifisol 414 (a blend of SPG, SAPP, and TSPP) were incorporated into the SDA (1 or 2%) or used as dipping solutions (5%) for the frankfurters. In SDA at 30°C, significant (P < 0.05) reductions in aflatoxin B1 and G1 production by A. flavus and A. parasiticus occurred when 1% SPG, 1% TSPP, 1% Brifisol 414, and 2% SAPP were present. In frankfurters, A. flavus B1 aflatoxin production was increased with SAPP and TSPP.

1989 ◽  
Vol 52 (1) ◽  
pp. 4-6 ◽  
Author(s):  
C. I. LEBRON ◽  
R. A. MOLINS ◽  
H. W. WALKER ◽  
A. A. KRAFT ◽  
H. M. STAHR

Mycelial growth and mycotoxin production of Aspergillus flavus and A. parasiticus were studied in Sabouraud dextrose agar containing pure or blended pyro-, poly- or meta-phosphates during 9 d of incubation at 30°C. Pure tetrasodium pyrophosphate (TSPP) and sodium polyphosphate, glassy (SPG, formerly hexametaphosphate), as well as a commercial phosphate blend and three combinations all containing various proportions of sodium acid pyrophosphate (SAPP), TSPP and SPG were tested. Inhibition of growth of aspergilli was observed in media containing 2.0% TSPP and 1.0 and 2.0% SPG and 2.0% of the commercial phosphate blend. Lower concentrations of single or blended phosphates allowed only limited, atypical mycelial growth. Sporulation was totally inhibited by 2.0% concentrations of single or blended phosphates, and so was production of aflatoxins B1 and G1. TSPP or SPG at 1.0% reduced (P<0.05) aflatoxin production from parts per million (controls) to parts per billion.


1983 ◽  
Vol 46 (11) ◽  
pp. 940-942 ◽  
Author(s):  
LLOYD B. BULLERMAN

Growth and aflatoxin production by selected strains of Aspergillus parasiticus and Aspergillus flavus in the presence of potassium sorbate at 12°C were studied. Potassium sorbate at 0.05, 0.10 and 0.15% delayed or prevented spore germination and initiation of growth, and slowed growth of these organisms in yeast-extract sucrose broth at 12°C. Increasing concentrations of sorbate caused more variation in the amount of total mycelial growth and generally resulted in a decrease in total mycelial mass. Potassium sorbate also greatly reduced or prevented production of aflatoxin B1 by A. parasiticus and A. flavus for up to 70 d at 12°C. At 0.10 and 0.15% of sorbate, aflatoxin production was essentially eliminated. A 0.05% sorbate, aflatoxin production was greatly decreased in A. flavus over the control, but only slightly decreased in A. parasiticus.


1995 ◽  
Vol 58 (11) ◽  
pp. 1249-1256 ◽  
Author(s):  
HASSAN GOURAMA ◽  
LLOYD B. BULLERMAN

A mixture of Lactobacillus species from a commercial silage inoculum reduced mold growth and inhibited aflatoxin production by Aspergillus flavus subsp. parasiticus. Actively growing Lactobacillus spp. cells totally inhibited germination of mold spores. Culture supernatant broth from the mixture of strains inhibited mold growth but did not destroy mold spore viability. Some mold spores were observed microscopically to have germinated and produced short nonbranching germ tubes; then growth ceased. While the pH of the culture broth and supernatant were about 4.0, acidification of nonfermented broth to pH 4.0 with HCl and lactic acid did not cause a similar inhibition of spore germination. The mixture of Lactobacillus species growing in a dialysis sack inhibited aflatoxin production by the A. flavus culture growing outside of the sack in broth, whereas mold growth was not affected. The pH values outside of the dialysis sack in the control and the treatments were similar (6 to 7) throughout the incubation period. When a dialysis sack with a molecular weight cutoff (MWCO) of 1,000 was used, there was little inhibition of aflatoxin B1 production, but with MWCOs of 6,000 to 8,000 and 12,000 to 14,000 aflatoxin production was greatly inhibited. In mixed culture experiments, levels of aflatoxin B1 and G1 were depressed compared to the control (monoculture). Mold growth in this case was also reduced compared to the monoculture system. Purified isolates of Lactobacillus from the commercial mixture had a slight effect on mold growth and aflatoxin production, but supernatant liquid of one isolate was quite inhibitory to production of aflatoxins B1 and G1, without affecting mold growth.


1989 ◽  
Vol 52 (5) ◽  
pp. 329-336 ◽  
Author(s):  
C. I. LEBRON ◽  
R. A. MOLINS ◽  
H. W. WALKER ◽  
A. A. KRAFT ◽  
H. M. STAHR

Mold growth and mycotoxin production were studied in high-moisture (20%) corn treated with tetrasodium pyrophosphate (TSPP); acid and alkaline sodium polyphosphate, glassy (SPG), also known as sodium hexametaphosphate; sodium tripolyphosphate (STPP); and tricalcium phosphate. Six mold cultures belonging to the genera Aspergillus, Fusarium, and Penicillium were tested in corn varieties highly resistant or highly susceptible to mold infection in the field, and in a mixture of five other varieties of corn. The acidic SPG, as well as TSPP and STPP totally prevented or reduced mold growth when added in powder form to corn at 1.0% or 2.0% (w/w), regardless of corn variety and high moisture content. Phosphates afforded protection in whole and damaged kernels. Similar results were obtained with 2.0% acidic SPG and TSPP when added in spray form. Whenever mold growth occurred, treatment of corn with 1.0% or 2.0% (w/w) TSPP and acidic or alkaline SPG inhibited (P<0.01) aflatoxin production by aspergilli.


1984 ◽  
Vol 11 (1) ◽  
pp. 43-45 ◽  
Author(s):  
David M. Wilson ◽  
Durham K. Bell

Abstract Peanut, corn and soybean seed were inoculated with 14 isolates of Aspergillus flavus Link and A. parasiticus Speare. The seeds were hand sorted to remove all visibly damaged seeds and were fumigated under vacuum (-95.25 k Pa Hg) with 2.2% cyano (methylmercuri) guanidine at 37 C for 48–96 hours. All fumigated seed had a minimum of 95% germination and a maximum of 5% residual contamination by fungi and bacteria. Corn and peanut samples (100 g/flask) were rehydrated to 28% moisture and inoculated with all isolates; soybean samples (100 g/flask) were rehydrated to 28% moisture and inoculated with four A. flavus and two A. parasiticus isolates. Samples were incubated for 10 days at 30 C and analyzed for aflatoxins. Aspergillus parasiticus isolates produced aflatoxin B1, B2, G1 and G2 while A. flavus isolates produced aflatoxin B1 and B2. Mean B1 production for 12 isolates was 34 mg/kg in peanut seed and 3.6 mg/kg in corn seed. Two A. flavus isolates produced 3.8 to 5.4 mg/kg B1 in peanut seed, and 2.2 mg/kg in corn seed. Overall, the mean B1 production was about 10 times higher on peanut seed than on corn seed. However, more G1 was produced on soybean seed than B1. The isolate and the substrate are apparent limiting factors in aflatoxin production. Peanut seed accumulated more aflatoxin than corn or soybean seed when inoculated with the same isolates and incubated under similar conditions.


Eisei kagaku ◽  
1991 ◽  
Vol 37 (2) ◽  
pp. 107-116 ◽  
Author(s):  
MITSUO NAKAZATO ◽  
SATOSHI MOROZUMI ◽  
KAZUO SAITO ◽  
KENJI FUJINUMA ◽  
TAICHIRO NISHIMA ◽  
...  

1972 ◽  
Vol 35 (10) ◽  
pp. 585-587 ◽  
Author(s):  
C. N. Shih ◽  
E. H. Marth

Brick cheese was placed in plastic containers and all surfaces except the top were sealed with wax. The top was inoculated with Aspergillus flavus or Aspergillus parasiticus and cheese was incubated in a humid chamber at 7.2, 12.8, and 23.9 C for up to 14 weeks after mold growth was evident. After incubation each cheese was cut horizontally into four layers, each approximately 1 cm thick. Each layer of cheese was extracted with a monophasic-biphasic solvent system (chloroform, methanol, and water). The extract was purified, concentrated, and aflatoxins were measured by thin-layer chromatography and fluorometry. No aflatoxins were produced by either mold at 7.2 C. At 12.8 C, A. parastticus developed aflatoxins B1 and G1 after 1 week of incubation. Aflatoxin produced by this mold persisted through 4 weeks of storage and then was not detectable. Aspergillus flavus did not form aflatoxin at 12.8 C. Both molds produced aflatoxin on cheese at 23.9 C; A. parasiticus did so after 1 week and A. flavus after 14 weeks. In some instances, aflatoxin was found in cheese 4 cm from the surface. It is reasonable to assume that cheese will not become contaminated with aflatoxin if the food is held at or below 7 C.


1980 ◽  
Vol 43 (1) ◽  
pp. 7-9 ◽  
Author(s):  
A. F. SCHINDLER ◽  
A. N. ABADIE ◽  
R. E. SIMPSON

Distilled water plus 0.1% surfactant suspensions of spores of Aspergillus flavus and Aspergillus parasiticus were exposed to several radiation levels of cobalt-60 gamma rays. Spores of A. flavus isolate M-141 were exposed to radiation levels of approximately 16, 90 and 475 Krads and inoculated onto a sterile rice substrate which was then monitored for aflatoxin production. In this initial trial with A. flavus M-141, aflatoxins B1 and M production on rice increased as radiation dose increased. At the highest dose, this increase was more than 50 times higher than the non-irradiated controls. Spores of an aflatoxin G1-producing A. parasiticus isolate, M-1094, were exposed to 90, 215 and 430 Krads and resulted in increased production of aflatoxins G1, B1, and M. Aflatoxin production by M-1094 was highest at the low and medium dose levels. Irradiation of spores of this isolate with 430 Krads produced no observable spore germination or growth on rice and no detectable aflatoxin after 1 week of incubation at 27 C. A typical colonies from irradiated spores were selected and their mycotoxin production was determined. Increase in aflatoxin production by these strains, as compared to non-irradiated controls, was 67:1 for aflatoxin B1, 136:1 for B2, and 138:1 for M. This potential for greatly increased mycotoxin production must be considered when food is irradiated or when a high production of aflatoxins is desired.


2015 ◽  
Vol 3 (1) ◽  
pp. 6-9 ◽  
Author(s):  
Geeta Rajbhandari Shrestha ◽  
Amin Udhin Mridha

Aflatoxins are the potent mycotoxins produced by Aspergillus flavus, which is hepatotoxic causing hepatocellular carcinoma. A. flavus produces sufficient amount of Aflatoxin B1 under favourable environments. Inhalation of spores and use of Aflatoxin B1, contaminated food by Aspergillus spp., could transfuse the toxins in the blood streams. The presence of these toxins in body fluid can be detected by immunological assays and which provides an effective technique for the diagnosis of the disease caused by A. flavus. Aflatoxins producing strain of A. flavus were screened in Aflatoxin Producing Medium. Production of Aflatoxin B1 by A. flavus was studied in different parameters such as incubation periods, temperatures, pH variations, sucrose concentration in Yeast Extract Sucrose medium and different natural media such as par-boiled rice, corn and groundnuts. The detection of toxins was done by TLC using silica gel (Merk) coated plates and confirmative test was done by Association of Official Analytical Chemists (AOAC) method. Presence and quantization was done by Enzyme Linked Immunosorbent Assay (ELISA) technique. Highest amount of Aflatoxin B1 was reported 68.56 ng/ml by ELISA in synthetic medium (Yeast Extract Sucrose) with 2% sucrose, pH 5.5, on 14th days of incubation, at 28±1°C (p-value 0.05). Similarly, highest amount was recorded in groundnuts (121.20ng/g) by ELISA and (500ng/kg) by TLC methods. ELISA is one of the most efficient methods used for detection and diagnosis of human diseases cause due to exposure of Aflatoxin B1 and A. flavus.Nepal Journal of Biotechnology. Dec. 2015 Vol. 3, No. 1: 6-9


Sign in / Sign up

Export Citation Format

Share Document