Cold Temperature Adaptation and Growth of Microorganisms†

1997 ◽  
Vol 60 (12) ◽  
pp. 1583-1594 ◽  
Author(s):  
ELAINE D. BERRY ◽  
PEGGY M. FOEGEDING

Most microorganisms must accommodate a variety of changing conditions and stresses in their environment in order to survive and multiply. Because of the impact of temperature on all reactions of the cell, adaptations to fluctuations in temperature are possibly the most common. Widespread in the environment and well-equipped for cold temperature growth, psychrophilic and psychrotrophic microorganisms may yet make numerous adjustments when faced with temperatures lower than optimum. Phospholipid and fatty acid alterations resulting in increased membrane fluidity at lower temperatures have been described for many cold tolerant microorganisms while others may make no similar adjustment. While the enzymes of cold growing bacteria have been less extensively studied than those of thermophilic bacteria, it appears that function at low temperature requires enzymes with flexible conformational structure, in order to compensate for lower reaction rates. In many organisms, including psychrophilic and psychrotrophic bacteria, specific sets of cold shock proteins are induced upon abrupt shifts to colder temperatures. While this cold shock response has not been fully delineated, it appears to be adaptive, and may function to promote the expression of genes involved in translation when cells are displaced to lower temperatures. The cold shock response of Escherichia coli has been extensively studied, and the major cold shock protein CspA appears to be involved in the regulation of the response. Upon cold shock, the induction of CspA and its counterparts in most microorganisms studied is prominent, but transient; studies of this response in some psychrotrophic bacteria have reported constitutive synthesis and continued synthesis during cold temperature growth of CspA homologues, and it will be interesting to learn if these are common mechanisms of among cold tolerant organisms. Psychrotrophic microorganisms continue to be a spoilage and safety problem in refrigerated foods, and a greater understanding of the physiological mechanisms and implications of cold temperature adaptation and growth should enhance our ability to design more effective methods of preservation.

2020 ◽  
Author(s):  
Ilhan Cem Duru ◽  
Anne Ylinen ◽  
Sergei Belanov ◽  
Alan Ávila Pulido ◽  
Lars Paulin ◽  
...  

Abstract Background: Psychrotrophic lactic acid bacteria (LAB) species are the dominant species in microbiota of cold-stored modified-atmosphere-packaged food products and they are the main cause of food spoilage. But still, the cold- and heat-shock response of the spoilage-related psychrotrophic lactic acid bacteria has not been studied. Here, to study cold- and heat-shock response of spoilage lactic acid bacteria, we performed time-series RNA-seq for Le. gelidum, Lc. piscium and P. oligofermentans using temperatures of 0 °C, 4 °C, 14 °C, 25 °C and 28 °C. Results: We showed that the cold-shock protein A (cspA) gene was the main cold-shock protein gene among cold-shock protein genes in all three species. Our results indicated DEAD-box RNA helicase genes (cshA, cshB) play a critical role in cold-shock response in psychrotrophic LAB. In addition, several RNase genes were also involved in cold-shock response in Lc. piscium and P. oligofermentans. Moreover, gene network inference analysis provided candidate genes involved in cold-shock response. Ribosomal proteins, tRNA modification, rRNA modification, and ABC and efflux MFS transporter genes clustered with cold-shock response genes in all three species, which was a strong indication that these genes would be part of cold-shock response machinery. Heat-shock treatment caused upregulation of Clp protease and chaperone genes in all three species and we were able to identify transcription binding site motifs for heat-shock response genes in Le. gelidum and Lc. piscium. Finally, we showed that food spoilage-related genes were upregulated at cold temperatures. Conclusions: The results of this study provide new insights into a better understanding of the cold- and heat-shock response in psychrotrophic LAB. In addition, candidate genes involved in cold- and heat-shock response predicted using gene network inference analysis could be used as a target for future studies.


Author(s):  
Haoyang Li ◽  
Rui Yang ◽  
Linlin Hao ◽  
Chunli Wang ◽  
Mingtang Li

Bacillus cereus D2, a psychrotrophic strain, plays an essential role in the restoration of heavy metal-contaminated soils, especially at low temperatures. However, the cold shock response mechanisms of this strain are unclear. In this study, the cold shock response of B. cereus D2 was characterized; as per the Arrhenius curve, 10 °C was chosen as the cold shock temperature. Six cold shock-like proteins were found and temporarily named cold shock protein (Csp)1-6; the respective genes were cloned and identified. Quantitative real-time PCR results showed that csp1, csp2, csp3, and csp6 were overexpressed under cold shock conditions. Interestingly, after cloning the respective encoding genes into pET-28a (+) vector and their subsequent transformation into E. coli BL21 (DE3), the strains expressing Csp2 and Csp6 grew faster at 10 °C, showing a large number of bacteria. These results suggest that Csp2 and Csp6 are the major cold shock proteins in B. cereus D2. Of note, the comparison of amino acid sequences and structures showed that Csp2 and Csp6 belong to the CspB and CspC families, respectively. Additionally, we show that the number of hydrophobic residues is not a determining feature of major Csps, while, on the other hand, the formation of an α-helix in the context of a leucine residue is the most dominant difference between major, and other Bacillus and E. coli Csps.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ilhan Cem Duru ◽  
Anne Ylinen ◽  
Sergei Belanov ◽  
Alan Avila Pulido ◽  
Lars Paulin ◽  
...  

Abstract Background Psychrotrophic lactic acid bacteria (LAB) species are the dominant species in the microbiota of cold-stored modified-atmosphere-packaged food products and are the main cause of food spoilage. Despite the importance of psychrotrophic LAB, their response to cold or heat has not been studied. Here, we studied the transcriptome-level cold- and heat-shock response of spoilage lactic acid bacteria with time-series RNA-seq for Le. gelidum, Lc. piscium, and P. oligofermentans at 0 °C, 4 °C, 14 °C, 25 °C, and 28 °C. Results We observed that the cold-shock protein A (cspA) gene was the main cold-shock protein gene in all three species. Our results indicated that DEAD-box RNA helicase genes (cshA, cshB) also play a critical role in cold-shock response in psychrotrophic LAB. In addition, several RNase genes were involved in cold-shock response in Lc. piscium and P. oligofermentans. Moreover, gene network inference analysis provided candidate genes involved in cold-shock response. Ribosomal proteins, tRNA modification, rRNA modification, and ABC and efflux MFS transporter genes clustered with cold-shock response genes in all three species, indicating that these genes could be part of the cold-shock response machinery. Heat-shock treatment caused upregulation of Clp protease and chaperone genes in all three species. We identified transcription binding site motifs for heat-shock response genes in Le. gelidum and Lc. piscium. Finally, we showed that food spoilage-related genes were upregulated at cold temperatures. Conclusions The results of this study provide new insights on the cold- and heat-shock response of psychrotrophic LAB. In addition, candidate genes involved in cold- and heat-shock response predicted using gene network inference analysis could be used as targets for future studies.


2018 ◽  
Author(s):  
Michael K. Watters ◽  
Victor Manzanilla ◽  
Holly Howell ◽  
Alexander Mehreteab ◽  
Erik Rose ◽  
...  

ABSTRACTWhen subjected to rapid drops of temperature (cold shock), Neurospora responds with a dramatic, but temporary shift in its branching pattern. While the cold shock response has been described morphologically, it has yet to be examined genetically. This project aims to begin the genetic characterization of the cold shock response and the associated acclimatization to cold environments. We report here the results of a screen of mutants from the Neurospora knockout library for alterations in their morphological response to cold shock and thus, their ability to acclimatize to the cold. Three groups of knockouts were selected to be subject to this screen: genes previously suspected to be involved in hyphal development as well as knockouts resulting in morphological changes; transcription factors; and genes homologous to E. coli genes known to alter their expression in response to cold shock. Several strains were identified with altered responses. The genes impacted in these mutants are listed and discussed. A significant percentage (81%) of the knockouts of genes homologous to those previously identified in E. coli showed altered cold shock responses in Neurospora – suggesting that the response in these two organisms is largely shared in common.


2007 ◽  
Vol 13 (1-3) ◽  
pp. 65-75 ◽  
Author(s):  
Sophie Beaufils ◽  
Nicolas Sauvageot ◽  
Alain Mazé ◽  
Jean-Marie Laplace ◽  
Yanick Auffray ◽  
...  

2013 ◽  
Vol 80 (1) ◽  
pp. 399-407 ◽  
Author(s):  
Gerald Mascher ◽  
Yağmur Derman ◽  
David G. Kirk ◽  
Eveliina Palonen ◽  
Miia Lindström ◽  
...  

ABSTRACTIn order to survive a temperature downshift, bacteria have to sense the changing environment and adjust their metabolism and structure. Two-component signal transduction systems (TCSs) play a central role in sensing and responding to many different environmental stimuli. Although the nonproteolytic (group II)Clostridium botulinumrepresents a major hazard in chilled foods, the cold adaption mechanisms of group IIC. botulinumorganisms are not known. Here, we show that the CLO3403/CLO3404 TCS ofC. botulinumE1 Beluga is involved in the cold shock response and growth at 12°C. Cold shock induced the expression of the genes encoding the histidine kinase (clo3403) and the response regulator (clo3404) by more than 100-fold after 5 h relative to their expression in a nonshocked culture at the corresponding time point. The involvement of CLO3403/CLO3404 in growth at low temperature was demonstrated by impaired growth of the insertionalclo3403andclo3404knockout mutants at 12°C compared to the growth of the wild-type culture. Additionally, the inactivation ofclo3403had a negative effect on motility. The growth efficiency at 12°C of the TCS mutants and the motility of the kinase mutants were restored by introducing a plasmid harboring the operon of the CLO3403/CLO3404 TCS. The results suggest that the CLO3403/CLO3404 TCS is important for the cold tolerance ofC. botulinumE1 Beluga.


Sign in / Sign up

Export Citation Format

Share Document