An Epidemiologic Critique of Current Microbial Risk Assessment Practices: The Importance of Prevalence and Test Accuracy Data

2004 ◽  
Vol 67 (9) ◽  
pp. 2000-2007 ◽  
Author(s):  
IAN A. GARDNER

Data deficiencies are impeding the development and validation of microbial risk assessment models. One such deficiency is the failure to adjust test-based (apparent) prevalence estimates to true prevalence estimates by correcting for the imperfect accuracy of tests that are used. Such adjustments will facilitate comparability of data from different populations and from the same population over time as tests change and the unbiased quantification of effects of mitigation strategies. True prevalence can be estimated from apparent prevalence using frequentist and Bayesian methods, but the latter are more flexible and can incorporate uncertainty in test accuracy and prior prevalence data. Both approaches can be used for single or multiple populations, but the Bayesian approach can better deal with clustered data, inferences for rare events, and uncertainty in multiple variables. Examples of prevalence inferences based on results of Salmonella culture are presented. The opportunity to adjust test-based prevalence estimates is predicated on the availability of sensitivity and specificity estimates. These estimates can be obtained from studies using archived gold standard (reference) samples, by screening with the new test and follow-up of test-positive and test-negative samples with a gold standard test, and by use of latent class methods, which make no assumptions about the true status of each sampling unit. Latent class analysis can be done with maximum likelihood and Bayesian methods, and an example of their use in the evaluation of tests for Toxoplasma gondii in pigs is presented. Guidelines are proposed for more transparent incorporation of test data into microbial risk assessments.

2010 ◽  
Vol 8 (2) ◽  
pp. 365-373 ◽  
Author(s):  
N. Karavarsamis ◽  
A. J. Hamilton

Four estimators of annual infection probability were compared pertinent to Quantitative Microbial Risk Analysis (QMRA). A stochastic model, the Gold Standard, was used as the benchmark. It is a product of independent daily infection probabilities which in turn are based on daily doses. An alternative and commonly-used estimator, here referred to as the Naïve, assumes a single daily infection probability from a single value of daily dose. The typical use of this estimator in stochastic QMRA involves the generation of a distribution of annual infection probabilities, but since each of these is based on a single realisation of the dose distribution, the resultant annual infection probability distribution simply represents a set of inaccurate estimates. While the medians of both distributions were within an order of magnitude for our test scenario, the 95th percentiles, which are sometimes used in QMRA as conservative estimates of risk, differed by around one order of magnitude. The other two estimators examined, the Geometric and Arithmetic, were closely related to the Naïve and use the same equation, and both proved to be poor estimators. Lastly, this paper proposes a simple adjustment to the Gold Standard equation accommodating periodic infection probabilities when the daily infection probabilities are unknown.


2015 ◽  
Vol 3 (0) ◽  
pp. 9781780404141-9781780404141
Author(s):  
J. A. Soller ◽  
A. W. Olivieri ◽  
J. N. S. Eisenberg ◽  
R. Sakajii ◽  
R. Danielson

LWT ◽  
2021 ◽  
Vol 144 ◽  
pp. 111201 ◽  
Author(s):  
Prez Verónica Emilse ◽  
Victoria Matías ◽  
Martínez Laura Cecilia ◽  
Giordano Miguel Oscar ◽  
Masachessi Gisela ◽  
...  

Parasitology ◽  
1999 ◽  
Vol 117 (7) ◽  
pp. 205-212 ◽  
Author(s):  
C. J. GIBSON ◽  
C. N. HAAS ◽  
J. B. ROSE

Throughout the past decade much research has been directed towards identifying the occurrence, epidemiology, and risks associated with waterborne protozoa. While outbreaks are continually documented, sporadic cases of disease associated with exposure to low levels of waterborne protozoa are of increasing concern. Current methodologies may not be sensitive enough to define these low levels of disease. However, risk assessment methods may be utilised to address these low level contamination events. The purpose of this article is to provide an introduction to microbial risk assessment for waterborne protozoa. Risk assessment is a useful tool for evaluating relative risks and can be used for development of policies to decrease risks. Numerous studies have been published on risk assessment methods for pathogenic protozoa including Cryptosporidium and Giardia. One common notion prevails: microbial risk assessment presents interesting complications to the traditional chemical risk assessment paradigm. Single microbial exposures (non-threshold) are capable of causing symptomatic illness unlike traditional chemical exposures, which require a threshold to be reached. Due to the lack of efficient recovery and detection methods for protozoa, we may be underestimating the occurrence, concentration and distribution of these pathogenic micro-organisms. To better utilize the tool of microbial risk assessment for risk management practices, future research should focus in the area of exposure assessment.


Sign in / Sign up

Export Citation Format

Share Document