scholarly journals Effect of sintering process on color parameters of nano-sized yttria partially stabilized tetragonal monolithic zirconia

Author(s):  
N Juntavee ◽  
S Attashu
Author(s):  
Niwut Juntavee ◽  
Apa Juntavee ◽  
Thipradi Phattharasophachai

Abstract Objective Different post-sintering processes are expected to be a reason for alteration in the strength of zirconia. This study evaluated the effect of post-sintering processes on the flexural strength of different types of monolithic zirconia. Materials and Methods A total of 120 classical- (Cz) and high-translucent (Hz) monolithic zirconia discs (1.2 mm thickness and 14 mm in Ø) were prepared, sintered, and randomly divided into four groups to be surface-treated with (1) as-glazed (AG); (2) finished and polished (FP); (3) finished, polished, and overglazed (FPOG); and (4) finished, polished, and heat-treated (FPHT) technique (n = 15). Biaxial flexural strength (σ) was determined on a piston-on-three ball in a universal testing machine at a speed of 0.5 mm/min. Statistical Analysis Analysis of variance, and post hoc Bonferroni multiple comparisons were determined for significant differences (α = 0.05). Weibull analysis was applied for survival probability, Weibull modulus (m), and characteristic strength (σ0). The microstructures were examined with a scanning electron microscope and X-ray diffraction. Results The mean ± standard deviation value of σ (MPa), m, and σ0 were 1,626.43 ± 184.38, 9.51, and 1,709.79 for CzAG; 1,734.98 ± 136.15, 12.83, and 1,799.17 for CzFP; 1,636.92 ± 130.11, 14.66, and 1,697.63 for CzFPOG; and 1,590.78 ± 161.74, 10.13, and 1,663.82 for CzFPHT; 643.30 ± 118.59, 5.59, and 695.55 for HzAG; 671.52 ± 96.77, 3.28, and 782.61 for HzFP; 556.33 ± 122.85, 4.76, and 607.01 for HzFPOG; and 598.36 ± 57.96, 11.22, and 624.89 for HzFPHT. The σ was significantly affected by the post-sintering process and type of zirconia (p < 0.05), but not by their interactions (p > 0.05). The Cz indicated a significantly higher σ than Hz. The FP process significantly enhanced σ more than other treatment procedures. Conclusion Post-sintering processes enabled an alteration in σ of zirconia. FP enhanced σ, while FPOG and FPHT resulted in a reduction of σ. Glazing tends to induce defects at the glazing interface, while heat treatment induces a phase change to tetragonal, both resulted in reducing σ. Finishing and polishing for both Cz and Hz monolithic zirconia is recommended, while overglazed or heat-treated is not suggested.


Author(s):  
E. F. Koch

Because of the extremely rigid lattice structure of diamond, generating new dislocations or moving existing dislocations in diamond by applying mechanical stress at ambient temperature is very difficult. Analysis of portions of diamonds deformed under bending stress at elevated temperature has shown that diamond deforms plastically under suitable conditions and that its primary slip systems are on the ﹛111﹜ planes. Plastic deformation in diamond is more commonly observed during the high temperature - high pressure sintering process used to make diamond compacts. The pressure and temperature conditions in the sintering presses are sufficiently high that many diamond grains in the sintered compact show deformed microtructures.In this report commercially available polycrystalline diamond discs for rock cutting applications were analyzed to study the deformation substructures in the diamond grains using transmission electron microscopy. An individual diamond particle can be plastically deformed in a high pressure apparatus at high temperature, but it is nearly impossible to prepare such a particle for TEM observation, since any medium in which the diamond is mounted wears away faster than the diamond during ion milling and the diamond is lost.


2011 ◽  
Vol 49 (01) ◽  
pp. 40-45 ◽  
Author(s):  
Hyun-Kuk Park ◽  
Seung-Min Lee ◽  
Hee-Jun Youn ◽  
Ki-Sang Bang ◽  
Ik-Hyun Oh

Sign in / Sign up

Export Citation Format

Share Document