scholarly journals Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: Density-dependent effects on organic matter remineralization and nutrient cycling

2009 ◽  
Vol 54 (6) ◽  
pp. 1911-1932 ◽  
Author(s):  
Anthony F. D'Andrea ◽  
Theodore H. DeWitt
2013 ◽  
Vol 10 (5) ◽  
pp. 424 ◽  
Author(s):  
Oliva Pisani ◽  
J. William Louda ◽  
Rudolf Jaffé

Environmental context Flocculent material (floc) in freshwater and coastal areas of the Florida Everglades plays an important role in food web dynamics and nutrient cycling. Using biomarkers and pigment chemotaxonomy, we determined the organic matter composition of floc from different environments in the Everglades, and found that it is dominated by local biomass inputs and influenced by hydrological regimes. With the on-going restoration of the Florida Everglades, it is important to gain a better understanding of the biogeochemical dynamics of floc, including its sources, transformations and reactivity. Abstract Flocculent material (floc) is an important energy source in wetlands. In the Florida Everglades, floc is present in both freshwater marshes and coastal environments and plays a key role in food webs and nutrient cycling. However, not much is known about its environmental dynamics, in particular its biological sources and bio-reactivity. We analysed floc samples collected from different environments in the Florida Everglades and applied biomarkers and pigment chemotaxonomy to identify spatial and seasonal differences in organic matter sources. An attempt was made to link floc composition with algal and plant productivity. Spatial differences were observed between freshwater marsh and estuarine floc. Freshwater floc receives organic matter inputs from local periphyton mats, as indicated by microbial biomarkers and chlorophyll-a estimates. At the estuarine sites, the floc is dominated by mangrove as well as diatom inputs from the marine end-member. The hydroperiod (duration and depth of inundation) at the freshwater sites influences floc organic matter preservation, where the floc at the short-hydroperiod site is more oxidised likely due to periodic dry-down conditions. Seasonal differences in floc composition were not consistent and the few that were observed are likely linked to the primary productivity of the dominant biomass (periphyton in the freshwater marshes and mangroves in the estuarine zone). Molecular evidence for hydrological transport of floc material from the freshwater marshes to the coastal fringe was also observed. With the on-going restoration of the Florida Everglades, it is important to gain a better understanding of the biogeochemical dynamics of floc, including its sources, transformations and reactivity.


2015 ◽  
Vol 12 (15) ◽  
pp. 4565-4575 ◽  
Author(s):  
C. Sanz-Lázaro ◽  
T. Valdemarsen ◽  
M. Holmer

Abstract. Increasing ocean temperature due to climate change is an important anthropogenic driver of ecological change in coastal systems. In these systems sediments play a major role in nutrient cycling. Our ability to predict ecological consequences of climate change is enhanced by simulating real scenarios. Based on predicted climate change scenarios, we tested the effect of temperature and organic pollution on nutrient release from coastal sediments to the water column in a mesocosm experiment. PO43− release rates from sediments followed the same trends as organic matter mineralization rates, increased linearly with temperature and were significantly higher under organic pollution than under nonpolluted conditions. NH4+ release only increased significantly when the temperature rise was above 6 °C, and it was significantly higher in organic polluted compared to nonpolluted sediments. Nutrient release to the water column was only a fraction from the mineralized organic matter, suggesting PO43− retention and NH4+ oxidation in the sediment. Bioturbation and bioirrigation appeared to be key processes responsible for this behavior. Considering that the primary production of most marine basins is N-limited, the excess release of NH4+ at a temperature rise > 6 °C could enhance water column primary productivity, which may lead to the deterioration of the environmental quality. Climate change effects are expected to be accelerated in areas affected by organic pollution.


2021 ◽  
pp. 383-411
Author(s):  
P. K. Ramachandran Nair ◽  
B. Mohan Kumar ◽  
Vimala D. Nair

Soil Research ◽  
2015 ◽  
Vol 53 (6) ◽  
pp. 605 ◽  
Author(s):  
B. W. Murphy

A review has been undertaken into how soil organic matter (SOM) affects a range of soil properties that are important for the productive capacity of soils. The potential effect of varying the amount of SOM in soil on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also including relevant information from overseas. The soil properties considered included aggregate stability, bulk density, water-holding capacity, soil erodibility, soil colour, soil strength, compaction characteristics, friability, nutrient cycling, cation exchange capacity, soil acidity and buffering capacity, capacity to form ligands and complexes, salinity, and the interaction of SOM with soil biology. Increases in SOM have the capacity to have strong influence only the physical properties of the surface soils, perhaps only the top 10 cm, or the top 20 cm at most. This limits the capacity of SOM to influence soil productivity. Even so, the top 20 cm is a critical zone for the soil. It is where seeds are sown, germinate and emerge. It is where a large proportion of plant materials are added to the soil for decomposition and recycling of nutrients and where rainfall either enters the soil or runs off. Therefore, the potential to improve soil condition in the top 0–20 cm is still critical for plant productivity. The SOM through nutrient cycling such as mineralisation of organic nitrogen to nitrate can have an influence on the soil profile.


2003 ◽  
Vol 17 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Raija Laiho ◽  
Harri Vasander ◽  
Timo Penttilä ◽  
Jukka Laine

Copeia ◽  
1999 ◽  
Vol 1999 (2) ◽  
pp. 495 ◽  
Author(s):  
Alexander S. Flecker ◽  
Brian P. Feifarek ◽  
Brad W. Taylor

2012 ◽  
Vol 63 (1) ◽  
pp. 60 ◽  
Author(s):  
Michele Repetto ◽  
Blaine D. Griffen

The burrowing mud shrimp, Upogebia pugettensis, is an important ecosystem engineer throughout bays and estuaries along the Pacific coast of North America. Populations of U. pugettensis have recently declined throughout its range. A likely reason for this decline is the arrival of an invasive bopyrid isopod parasite, Orthione griffenis, which has colonised the system and increased in prevalence. We tested the following three hypotheses regarding this host–parasite system: (1) parasite infection is correlated with the volume of water processed by the host; (2) infection negatively affects host’s energetic state; and (3) infection causes feminisation in male hosts. We used several physiological and morphological measures to quantify the effects of this parasite infection on U. pugettensis. The parasite appears to have different physiological effects on male and female hosts. Our study provides mixed support for the previous theory that predicted the mechanistic interactions between this host and its new parasite. Recent examples from other systems have demonstrated that invasive parasites can have far-reaching influences when they infect ecosystem engineers. Given the negative effects of O. griffenis on U. pugettensis, this invasive parasite may have similarly large impacts on Pacific North-west estuaries throughout its invaded range.


Sign in / Sign up

Export Citation Format

Share Document