ROLE OF CHEMISTRY IN ADVANCED CARBON-BASED COMPOSITES

Author(s):  
C Vix-Guterl ◽  
P Ehrburger
Keyword(s):  
2021 ◽  
pp. 009524432110061
Author(s):  
Bo Yang ◽  
Balakrishnan Nagarajan ◽  
Pierre Mertiny

Polymers may absorb fluids from their surroundings via the natural phenomenon of swelling. Dimensional changes due to swelling can affect the function of polymer components, such as in the case of seals, microfluidic components and electromechanical sensors. An understanding of the swelling behavior of polymers and means for controlling it can improve the design of polymer components, for example, for the previously mentioned applications. Carbon-based fillers have risen in popularity to be used for the property enhancement of resulting polymer composites. The present investigation focuses on the effects of three carbon-based nano-fillers (graphene nano-platelets, carbon black, and graphene nano-scrolls) on the dimensional changes of polydimethylsiloxane composites due to swelling when immersed in certain organic solvents. For this study, a facile and expedient methodology comprised of optical measurements in conjunction with digital image analysis was developed as the primary experimental technique to quantify swelling dimensional changes of the prepared composites. Other experimental techniques assessed polymer cross-linking densities and elastic mechanical properties of the various materials. The study revealed that the addition of certain carbon-based nano-fillers increased the overall swelling of the composites. The extent of swelling further depended on the organic solvent in which the composites were immersed in. Experimental findings are contrasted with published models for swelling prediction, and the role of filler morphology on swelling behavior is discussed.


Energy ◽  
2021 ◽  
pp. 122478
Author(s):  
Tabbi Wilberforce ◽  
Mohammad Ali Abdelkareem ◽  
Khaled Elsaid ◽  
A.G. Olabi ◽  
Enas Taha Sayed

Author(s):  
Mir Saeed Seyed Dorraji ◽  
Mohammad Hossein Rasoulifard ◽  
Zahra Aghamoradi ◽  
Abdolreza Tarighati Sareshkeh ◽  
Hoda Daneshvar ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46436-46444 ◽  
Author(s):  
Suyun Wang ◽  
Xiang Ke ◽  
Suting Zhong ◽  
Yaru Lai ◽  
Danlin Qian ◽  
...  

The porous and graphitized carbon-based materials prepared by sacrificing template and in situ reduction show an excellent microwave absorbing performance.


2020 ◽  
Vol 13 (5) ◽  
pp. 1377-1407 ◽  
Author(s):  
Mahboubeh Hadadian ◽  
Jan-Henrik Smått ◽  
Juan-Pablo Correa-Baena

Enhancing the stability of perovskite solar cells is crucial to the deployment of this technology. Carbon-based materials are promising candidates for providing long-term stable perovskite solar cells suitable for commercialization.


2021 ◽  
Author(s):  
soumya banerjee

Information plays a critical role in complex biologicalsystems. This article proposes a role for information processing in questions around the origin of life and suggests how computational simulations may yield insights into questions related to the origin of life. Such a computational model of the origin of life would unify thermodynamics with information processing and we would gain an appreciation of why proteins and nucleotides evolved as the substrate of computation andinformation processing in living systems that we see on Earth. Answers to questions like these may give us insights into noncarbon based forms of life that we could search for outside Earth. I hypothesize that carbon-based life forms are only one amongst a continuum of life-like systems in the universe.Investigations into the role of computational substrates that allow information processing is important and could yield insights into:1) novel non-carbon based computational substrates thatmay have “life-like” properties, and2) how life may have actually originated from non-life onEarth. Life may exist as a continuum between non-life and life and we may have to revise our notion of life and how common it is in the universe.Looking at life or life-like phenomena through the lens ofinformation theory may yield a broader view of life.


Electrochem ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 410-438
Author(s):  
Noureen Siraj ◽  
Samantha Macchi ◽  
Brian Berry ◽  
Tito Viswanathan

Herein, metal-free heteroatom doped carbon-based materials are being reviewed for supercapacitor and energy applications. Most of these low-cost materials considered are also derived from renewable resources. Various forms of carbon that have been employed for supercapacitor applications are described in detail, and advantages as well as disadvantages of each form are presented. Different methodologies that are being used to develop these materials are also discussed. To increase the specific capacitance, carbon-based materials are often doped with different elements. The role of doping elements on the performance of supercapacitors has been critically reviewed. It has been demonstrated that a higher content of doping elements significantly improves the supercapacitor behavior of carbon compounds. In order to attain a high percentage of elemental doping, precursors with variable ratios as well as simple modifications in the syntheses scheme have been employed. Significance of carbon-based materials doped with one and more than one heteroatom have also been presented. In addition to doping elements, other factors which play a key role in enhancing the specific capacitance values such as surface area, morphology, pore size electrolyte, and presence of functional groups on the surface of carbon-based supercapacitor materials have also been summarized.


Sign in / Sign up

Export Citation Format

Share Document