Degrees of freedom, movement co-ordination and interceptive action of children with and without cerebral palsy

2012 ◽  
Vol 251 ◽  
pp. 231-234
Author(s):  
Gang Li ◽  
Ya Dong Chen ◽  
Bo Wang ◽  
Wan Shan Wang

In this paper, we present the modeling and dynamics simulation of a six-DOF tunnel segment erector for tunnel boring machine (TBM), which is performed in the virtual prototype platform. The 3D virtual assembling model of a tunnel segment erector is built based on Pro/E software according to its design parameters such as structure and size. After the interference inspection, the model is imported into ADAMS through the interface module of Mech/Pro. The model is simplified and optimized reasonably and various constraints are applied under variety working conditions. The results of simulation show that the design has six degrees of freedom movement capacity which meets the design requirements. At the same time the dynamics characteristics of drives and the forces of each part are obtained and they will provide a boundary condition for strength check and basis for the power system design which is important for the further optimal design.


2002 ◽  
Vol 12 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Kenji Kurosawa ◽  
Takashi Watanabe ◽  
Ryoko Futami ◽  
Nozomu Hoshimiya ◽  
Yasunobu Handa

We have developed a closed-loop FES system using a magnetic 3-D position and orientation measurement system (FASTRAK, Polhemus Inc). The purpose of this development was to resolve some experimental difficulties involved in our previous goniometer-based experimental system. The new system enabled us to perform FES control experiments on the multi-joint musculoskeletal system of the upper limbs including forearm pronation/supination. In this paper, we evaluated the system by some single-joint tracking tasks in order to compare its control performance with that of the previous system. Four muscles (ECRL(B), ECU, FCR, and FCU) of neurologically intact subjects were stimulated to control the wrist joint's two degrees of freedom movement. Stimulation currents were determined by a multi-channel PID controller that was designed for a musculoskeletal system with redundancy (i.e. the number of muscles stimulated is more than that of the degree-of-freedom of the movement). The results showed that the system had sufficient control performance on tracking desired trajectories. Moreover, the system could compensate for unwanted external disturbances.


2014 ◽  
Vol 909 ◽  
pp. 135-140
Author(s):  
Jie Jiang Shao ◽  
Feng Peng Wei ◽  
Lan Zhen

A subminiature submersible has been designed on the basis of the condition of the marine ranching, especially the shape of the submersible in view of the complex environment of marine ranching. Its mainly designed from three major movements, namely advance, ups-downs and yawing movement; it can complete three degrees of freedom movement. At the same time a force analysishas beengiven. Thetransfer functions have been deduced, and the simulation structure has been designed according to its kinematics model. According to the simulation results, the feasibility of the kinematics model was verified.


2012 ◽  
Vol 490-495 ◽  
pp. 3883-3886
Author(s):  
Gang Li ◽  
Ya Dong Chen ◽  
Bo Wang ◽  
Wan Shan Wang

In this paper, we present the modeling and kinematics simulation of fine-adjustment system for segment erector of tunnel boring machine (TBM), which is performed in the virtual prototype platform. The 3D virtual assembling model of fine-adjustment system is built with Pro/E software according to its design parameters such as structure and size. After the interference inspection, the model is imported into ADAMS through the interface module of Mech/Pro. The model is simplified and optimized reasonably and various constraints are applied under variety working conditions. The results of simulation show that the design has three degrees of freedom movement capacity which meets the design requirements. At the same time the kinematics characteristics of each part along three different directions are obtained and they will provide some references for the further optimal design.


2015 ◽  
Vol 220-221 ◽  
pp. 116-125
Author(s):  
Andrzej Zbrowski

The paper presents the structure of a precise parallel tri-axle manipulator with the functionality of progressing-tilting table. The end effector of the device is a platform, for which three coordinates of position are defined. The manipulator has three degrees of freedom: movement perpendicular to the base and rotation in two mutually perpendicular axes contained in the surface parallel to the base.The concept of the positioning mechanism is based on parallel tripod kinematics where the end effector – the platform – is seated on three active limbs – actuators. The use of parallel kinematics allowed modular construction of the positioning mechanism. The developed modular functional mechanism with minimal number of elements in kinematic chain ensures high positioning resolution. The concept of application of eccentric mechanism for platform positioning is an original idea in this solution. The compact construction allows applying the manipulator in medical devices that require meeting of the hygienic conditions in the medical test and research laboratories. The possibility of the utilisation of the precise manipulator covers wide areas of science and technology where precise positioning of the object is required, e.g. sample positioning for microscopes, scanning systems.


2012 ◽  
Vol 479-481 ◽  
pp. 699-702 ◽  
Author(s):  
Gang Li ◽  
Li Da Zhu ◽  
Jian Yu Yang ◽  
Wan Shan Wang

In this paper, we present the modeling and kinematics simulation of a six-DOF segment erector for tunnel boring machine (TBM), which is performed in the virtual prototype platform. The 3D virtual assembling model of a tunnel segment erector is built based on Pro/E software according to its design parameters such as structure and size. After the interference inspection, the model is imported into ADAMS through the interface module of Mech/Pro. The model is simplified and optimized reasonably and various constraints are applied under variety working conditions. The results of simulation show that the design has six degrees of freedom movement capacity which meets the design requirements. At the same time the kinematics characteristics of each part along three different directions are obtained and they will provide some references for the further optimal design.


2015 ◽  
Vol 740 ◽  
pp. 150-153
Author(s):  
Cai Qing Yue

Organization is an organization with a parameter independent degrees of freedom movement, mechanical design and analysis of important concepts, the degree of freedom for the agency when analyzing problems illustrate the organization's scope of application and freedom of formula should pay attention to the issue, and based on this proposed the Reflections, in order to better use and master.


2007 ◽  
Vol 39 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Jonathan Shemmell ◽  
Stephan Riek ◽  
James R. Tresilian ◽  
Richard G. Carson

1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


Sign in / Sign up

Export Citation Format

Share Document