Miniature Tripod with Parallel Kinematics for Use in Clean Room Medical Laboratory Applications

2015 ◽  
Vol 220-221 ◽  
pp. 116-125
Author(s):  
Andrzej Zbrowski

The paper presents the structure of a precise parallel tri-axle manipulator with the functionality of progressing-tilting table. The end effector of the device is a platform, for which three coordinates of position are defined. The manipulator has three degrees of freedom: movement perpendicular to the base and rotation in two mutually perpendicular axes contained in the surface parallel to the base.The concept of the positioning mechanism is based on parallel tripod kinematics where the end effector – the platform – is seated on three active limbs – actuators. The use of parallel kinematics allowed modular construction of the positioning mechanism. The developed modular functional mechanism with minimal number of elements in kinematic chain ensures high positioning resolution. The concept of application of eccentric mechanism for platform positioning is an original idea in this solution. The compact construction allows applying the manipulator in medical devices that require meeting of the hygienic conditions in the medical test and research laboratories. The possibility of the utilisation of the precise manipulator covers wide areas of science and technology where precise positioning of the object is required, e.g. sample positioning for microscopes, scanning systems.

2011 ◽  
Vol 199-200 ◽  
pp. 358-364
Author(s):  
Heng Bin Ren ◽  
Mao Lin Huang

Epicyclical gear trains with three-degrees of freedom have found its wide application as the development of new technique. Currently, nearly all domestic researches on epicyclical gear trains with three or more degrees of freedom are aimed at the practical application, and scare works systematically investigate basic configuration and synthesis of the train system. An innovation synthesis method is proposed based on the compound joint kinematic chain and the substitution of low pair with high pair for epicyclical gear trains with three-degrees of freedom, and the possible independent basic configurations of epicyclical gear trains with three-degrees of freedom are obtained by applying the proposed method and the utilization of the method is also discussed. The method provides not only a new approach for innovation synthesis of epicyclical gear trains but also a few basic configurations of epicyclical gear trains with three-degrees of freedom for practice design.


2019 ◽  
Vol 20 (7) ◽  
pp. 428-436
Author(s):  
A. K. Tolstosheev ◽  
V. A. Tatarintsev

The work is devoted to improving the reliability and manufacturability of mechatronic machine designs with parallel kinematics by replacing statically indeterminable manipulators with statically determinable mechanisms. A technique is proposed in which the design of statically determinable manipulators of technological mechatronic machines with parallel kinematics is performed by modifying the structure of prototypes and includes three steps: identifying and analyzing redundant links, eliminating redundant links, checking the correctness of eliminating redundant links. To determine the number of degrees of freedom of the mechanism, identify redundant links, and verify the solution, the authors use the proposed methodology for structural analysis of parallel structure mechanisms. In structural analysis, a manipulator is represented by a hierarchical structure and is considered as a parallel connection of elementary mechanisms with an open kinematic chain; as a kinematic chain consisting of leading and driven parts; as a set of links and kinematic pairs; as a kinematic connection of the output link and the rack. The article implements the following techniques for eliminating redundant links: mobility increase in kinematic pairs; introduction of unloading links and passive kinematic pairs to the kinematic chain; exclusion of extra links and pairs from the kinematic chain; increase in mobility in some kinematic pairs simultaneously with the exclusion of other kinematic pairs that have become superfluous. The authors developed several variants of structural schemes of self-aligning manipulators based on the Orthoglide mechanism, which retain the basic functional proper ties of the prototype. To increase the number of self-aligning mechanism diagrams, the redistribution of mobilities and links within the connecting kinematic chain and between connecting kinematic chains is used. The proposed methodics allow to determine the number of degrees of freedom of the mechanism, the number and type of redundant links, eliminate redundant links and, on an alternative basis, build structural diagrams of statically determinable mechanisms of technological mechatronic machines with parallel kinematics.


Robotica ◽  
2001 ◽  
Vol 19 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Raffaele Di Gregorio

Only one parallel wrist with three equal legs containing just revolute pairs has been already presented in the literature. This parallel wrist is overconstrained, i.e., it involves three degrees of freedom required to orientate the end effector by using repetitions of constraints. The overconstrained mechanisms have the drawback of jamming or undergoing high internal loads when geometric errors occur. This paper presents a new parallel wrist, named 3-RUU wrist. The 3-RUU wrist is not overconstrained. It has three equal legs just involving revolute pairs and actuators adjacent to the frame and uses an architecture (3-RUU) already employed to obtain manipulators that make the end effector translate. The 3-RUU wrist kinematic analysis is addressed. This analysis shows that the new parallel wrist can reach singular configurations (translation singularities) in which the spherical constraint between end effector and frame fails. The singularity condition that makes finding all the 3-RUU wrist singular configurations possible is written in explicit form and geometrically interpreted.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Sen Qian ◽  
Kunlong Bao ◽  
Bin Zi ◽  
W. D. Zhu

Abstract This paper presents a new trajectory planning method based on the improved quintic B-splines curves for a three degrees-of-freedom (3-DOF) cable-driven parallel robot (CDPR). First, the conditions of positive cables’ tension are expressed in terms of the position and acceleration constraints of the end-effector. Then, an improved B-spline curve is introduced, which is employed for generating a pick-and-place path by interpolating a set of given via-points. Meanwhile, by expressing the position and acceleration of the end-effector in terms of the first and second derivatives of the improved B-spline, the cable tension constraints are described in the form of B-spline parameters. According to the properties of the defined pick-and-place path, the proposed motion profile is dominated by two factors: the time taken for the end-effector to pass through all the via-points and the ratio between the nodes of B-spline. The two factors are determined through multi-objective optimization based on the efficiency coefficient method. Finally, experimental results on a 3-DOF CDPR show that the improved B-spline exhibits overall superior behavior in terms of velocity, acceleration, and cables force compared with the traditional B-spline. The validity of the proposed trajectory planning method is proved through the experiments.


2016 ◽  
Vol 8 (2) ◽  
Author(s):  
P. C. López-Custodio ◽  
J. M. Rico ◽  
J. J. Cervantes-Sánchez ◽  
G. I. Pérez-Soto

The method of intersection of surfaces generated by kinematic dyads is applied to obtain mechanisms that are able to shift from one mode of motion to another. Then a mobility analysis shows that the singularities of the generated surfaces can be used to obtain mechanisms which can change their number of degrees-of-freedom depending on its configuration. The generator dyads are connected as usually done by a spherical pair. However, in the cases shown in this contribution the three-degrees-of-freedom of the spherical pair are not all necessary to keep the kinematic chain closed and movable, and the spherical pair can be substituted by either a pair of intersecting revolute joints or a single revolute joint. This substitution can be obtained by means of two methods presented in this contribution.


Author(s):  
Nicola Scuor ◽  
Paolo Gallina ◽  
Marco Giovagnoni

This paper presets three degrees of freedom (DOF) piezoelectric micropositioning stage. The stage is composed of a stack of piezodisk bender actuators actuated in such a way to prevent the end-effector from rotating; this way the end-effector can only translate along the x, y, and z axes. Thanks to its snake-like configuration, the system is capable of large displacements (of the order of 50 μm) with low driving voltages (of the order of 100 V). Several lumped-mass static and dynamic models of the device have been implemented. Static experimental results, which are in agreement with simulation data, confirmed the performances of the device. A dynamic model showed the natural frequencies of the mechanism. Also dynamic tests have been conducted in order to validate the dynamic model.


2014 ◽  
Vol 909 ◽  
pp. 135-140
Author(s):  
Jie Jiang Shao ◽  
Feng Peng Wei ◽  
Lan Zhen

A subminiature submersible has been designed on the basis of the condition of the marine ranching, especially the shape of the submersible in view of the complex environment of marine ranching. Its mainly designed from three major movements, namely advance, ups-downs and yawing movement; it can complete three degrees of freedom movement. At the same time a force analysishas beengiven. Thetransfer functions have been deduced, and the simulation structure has been designed according to its kinematics model. According to the simulation results, the feasibility of the kinematics model was verified.


Author(s):  
Matteo Palpacelli ◽  
Massimo Callegari ◽  
Luca Carbonari ◽  
Giacomo Palmieri

This paper presents the design of a reconfigurable parallel kinematics machine endowed with three degrees of freedom of pure translation, or alternately of pure rotation. Such reconfigurability results from the use of lockable spherical joints, which realize the connection between each robot leg and the moving platform. Three actuated legs are used to drive the platform motion. The change of configuration occurs only at a specific pose, called home configuration. A control strategy allows to manage the shift phase and activate the two mobilities one at a time. Multibody simulations allowed to analyze the dynamic behavior of the manipulator and to verify the choices made with regard to the robot mechanics and the size of actuation systems. Position and differential kinematics of the manipulator are briefly introduced in order to demonstrate the simplicity of the analytic expressions and the mechanical feasibility of the manipulator.


2006 ◽  
Vol 129 (12) ◽  
pp. 1243-1250 ◽  
Author(s):  
Oscar Salgado ◽  
Oscar Altuzarra ◽  
Enrique Amezua ◽  
Alfonso Hernández

A parallelogram-based 4 degrees-of-freedom parallel manipulator is presented in this paper. The manipulator can generate the so-called Schönflies motion that allows the end effector to translate in all directions and rotate around an axis parallel to a fixed direction. The theory of group of displacements is applied in the synthesis of this manipulator, which employs parallelograms in every limb. The planar parallelogram kinematic chain provides a high rotational capability and an improved stiffness to the manipulator. This paper shows the kinematic analysis of the manipulator, including the closed-form resolution of the forward and inverse position problems, the velocity, and the singularity analysis. Finally, a prototype of the manipulator, adding some considerations about its singularity-free design, and some technical applications in which the manipulator can be used are presented.


2018 ◽  
Vol 10 (5) ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Ramon Rodriguez-Castro

In this work, a new parallel manipulator with multiple operation modes is introduced. The proposed robot is based on a three-degrees-of-freedom (3DOF) parallel manipulator endowed with a three-dof central kinematic chain, where by blocking some specific kinematic pairs, the robot can modify its mobility. Hence, the robot manipulator is able to assume the role of a limited-dof or a nonredundant parallel manipulator. Without loss of generality, the instantaneous kinematics of one member of the family of parallel manipulators generated by the reconfigurable parallel manipulator, the three-RPRRC + RRPRU nonredundant parallel manipulator with decoupled motions, is approached by means of the theory of screws. For the sake of completeness, the finite kinematics of the robot is also investigated. Numerical examples are included with the purpose to clarify the method of kinematic analysis.


Sign in / Sign up

Export Citation Format

Share Document