The Kinematics Model and Simulation of a Subminiature Based on Marine Ranching

2014 ◽  
Vol 909 ◽  
pp. 135-140
Author(s):  
Jie Jiang Shao ◽  
Feng Peng Wei ◽  
Lan Zhen

A subminiature submersible has been designed on the basis of the condition of the marine ranching, especially the shape of the submersible in view of the complex environment of marine ranching. Its mainly designed from three major movements, namely advance, ups-downs and yawing movement; it can complete three degrees of freedom movement. At the same time a force analysishas beengiven. Thetransfer functions have been deduced, and the simulation structure has been designed according to its kinematics model. According to the simulation results, the feasibility of the kinematics model was verified.

2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877390 ◽  
Author(s):  
Yue Zhu ◽  
Jiangming Kan ◽  
Wenbin Li ◽  
Feng Kang

As to the complicated terrain in forest, forestry chassis with an articulated body with three degrees of freedom and installed luffing wheel-legs (FC-3DOF&LW) is a novel chassis that can surmount obstacles. In addition, the rear frame of FC-3DOF&LW is regarded as the platform to carry equipment. Small inclination angle for rear frame contributes to stability and ride comfort. This article describes the strategy of traversing obstacles and simulation for FC-3DOF&LW that drives in forest terrain. First, key structures of FC-3DOF&LW are briefly introduced, which include articulated structure with three degrees of freedom and luffing wheel-leg. Based on the sketch of luffing wheel-leg, the movement range of luffing wheel-leg is obtained by hydraulic cylinder operation. Second, the strategy of crossing obstacles that are simplified three models of terrain is presented, and the simulation for surmounting obstacles is constructed in multibody dynamics software. The simulation results demonstrate that the inclination angle of rear frame is 18° when slope is 30°. A maximum 12° decrease of inclination angle for rear frame can be acquired when luffing wheel-legs are applied. For traversing obstacles with both sides, the maximum inclination angle of rear frame is about 1.2° and is only 3° for traversing obstacles with single side.


Author(s):  
Mark D. Bedillion

Actuator arrays are planar distributed manipulation systems that use multiple two degree-of-freedom actuators to manipulate objects with three degrees of freedom (x, y, and θ). Prior work has discussed actuator array dynamics while neglecting the inertia of the actuators; this paper extends prior work to the case of non-negligible actuator inertia. The dynamics are presented using a standard friction model incorporating stiction. Simulation results are presented that show object motion under previously derived control laws.


2014 ◽  
Vol 989-994 ◽  
pp. 3683-3688
Author(s):  
Li Xin Meng ◽  
Ding Xuan Zhao ◽  
Yang Yang Bai ◽  
Li Zhong Zhang

Lightweight, flexible motion simulation is the demand of airborne laser communication optical transceive when apply to outside test. A new parallel 2_DOF platform that has the function of azimuth and pitching is put forword based on the analysis of airplane position-pose changes affect the performance airborne laster communication APT system, and the kinematics model is established by using closed-loop vector method. Kinematics model is right through the comparison of mathematical model and simulation results of ADAMS, which provides the reference and basis for the design of control system.


Author(s):  
Abdelrahem Atawnih ◽  
Zoe Doulgeri ◽  
George A. Rovithakis

In this work, an admittance control scheme is proposed utilizing a highly robust prescribed performance position tracking controller for flexible joint robots which is designed at the operational space. The proposed control scheme achieves the desired impedance to the external contact force as well as superior position tracking in free motion without any robot model knowledge, as opposed to the torque based impedance controllers. Comparative simulation results on a three degrees-of-freedom (3DOF) flexible joint manipulator, illustrate the efficiency of the approach.


Author(s):  
Hao Wang ◽  
GuoHua Gao ◽  
Qixiao Xia ◽  
Han Ren ◽  
LianShi Li ◽  
...  

Purpose The purpose of this paper is to present a novel stretch-retractable single section (SRSS) continuum manipulator which owns three degrees of freedom and higher motion range in three-dimension workspace than regular single continuum manipulator. Moreover, the motion accuracy was analyzed based on the kinematic model. In addition, the experiments were carried out for validation of the theory. Design/methodology/approach A kinematics model of the SRSS continuum manipulator is presented for analysis on bending, rotating and retracting in its workspace. To discuss the motion accuracy of the SRSS continuum manipulator, the dexterity theory was introduced based on the decomposing of the Jacobian matrix. In addition, the accuracy of motion is estimated based on the inverse kinematics and dexterity theory. To verify the presented theory, the motion of free end was tracked by an electromagnetic positioning system. According to the comparison of experimental value and theoretical analysis, the free end error of SRSS continuum manipulator is less than 6.24 per cent in the region with favorable dexterity. Findings This paper presents a new stretch-retractable continuum manipulator that the structure was composed of several springs as the backbone. Thus, the SRSS continuum manipulator could own wide motion range depending on its retractable structure. Then, the motion accuracy character of the SRSS continuum manipulator in the different regions of its workspace was obtained both theoretically and experimentally. The results show that the high accuracy region distributes in the vicinity of the outer boundary of the workspace. The motion accuracy gradually decreases with the motion position approaching to the center of its workspace. Research limitations/implications The presented SRSS continuum manipulator owns three degrees of freedom. The future work would be focused on the two-section structure which will own six degrees of freedom. Practical implications In this study, the SRSS continuum manipulator could be extended to six degrees of freedom continuum robot with two sections that is less one section than regular six degrees of freedom with three single section continuum manipulator. Originality/value The value of this study is to propose a SRSS continuum manipulator which owns three degrees of freedom and could stretch and retract to expend workspace, for which the accuracy in different regions of the workspace was analyzed and validated based on the kinematics model and experiments. The results could be feasible to plan the motion space of the SRSS continuum manipulator for keeping in suitable accuracy region.


2015 ◽  
Vol 220-221 ◽  
pp. 116-125
Author(s):  
Andrzej Zbrowski

The paper presents the structure of a precise parallel tri-axle manipulator with the functionality of progressing-tilting table. The end effector of the device is a platform, for which three coordinates of position are defined. The manipulator has three degrees of freedom: movement perpendicular to the base and rotation in two mutually perpendicular axes contained in the surface parallel to the base.The concept of the positioning mechanism is based on parallel tripod kinematics where the end effector – the platform – is seated on three active limbs – actuators. The use of parallel kinematics allowed modular construction of the positioning mechanism. The developed modular functional mechanism with minimal number of elements in kinematic chain ensures high positioning resolution. The concept of application of eccentric mechanism for platform positioning is an original idea in this solution. The compact construction allows applying the manipulator in medical devices that require meeting of the hygienic conditions in the medical test and research laboratories. The possibility of the utilisation of the precise manipulator covers wide areas of science and technology where precise positioning of the object is required, e.g. sample positioning for microscopes, scanning systems.


Author(s):  
Sudhir Kaul

This paper presents a multi-degree-of-freedom model for the analysis of mechanical snubbing in elastomeric isolators. The model uses a system of elastomeric isolators and snubbers to assemble a rigid body with three degrees-of-freedom to a rigid frame. The isolators are supplemented by the snubbing system so as to limit the displacement of the rigid body in all three directions of motion when the system undergoes transient loading or overloading conditions. The model is piecewise non-linear and uses normalized Bouc-Wen elements in order to capture inherent hysteresis of the elastomeric isolators and the snubbing system as well as the transition in stiffness and damping properties resulting due to inherent coupling between the isolators and the snubbing system. Separate elements are used to model the enhanced stiffness resulting from the snubbing system in the translational directions of motion. A set of elastomeric isolators and snubbing systems is used for data collection, characterization and model validation. The data collection is carried out at multiple strain amplitudes and strain rates. A conventional least squares based parameter identification technique is used for characterization. The completely characterized model is then used for simulating the response of the rigid body and the simulation results are compared to experimental data. The simulation results are found to be in general agreement with the experimental data.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 423 ◽  
Author(s):  
Junnan Qian ◽  
Yangmin Li ◽  
Lukai Zhuge

A novel type of spatial three revolute-cylindrical-universal (3-RCU) flexible micro manipulator is designed based on flexible hinges, and analyzed by finite element analysis (FEA). The piezoelectric actuators are adopted as driving devices in this platform, a new lever amplification mechanism is designed as its micro-displacement amplification mechanism, the workspace of the platform is enlarged, and the theoretical and simulation amplification ratios of the amplification mechanism are 3.056 and 2.985, respectively. The margin of error is just 2.3%. In space, the 3-RCU platform can realize the micro movement of three degrees of freedom. Also, the platform has a high carrying capacity, less motion loss, and the transmission efficiency is higher when the platform works. The decoupling performance, stress under extreme conditions and natural frequency of the platform are simulated by ANSYS Workbench software. A series of simulation analyses show the feasibility and security of the platform. The platform has good decoupling and working performance. The simulation results show that the platform has high simulation stiffness and high positioning accuracy.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2930 ◽  
Author(s):  
Jie Tian ◽  
Jie Ding ◽  
Yongpeng Tai ◽  
Ning Chen

A new type of hierarchical control is proposed for a four-wheel-steering (4WS) vehicle, in which both the sideslip angle and yaw rate feedback are used, and the saturation of the control variables (i.e., the front and rear steering angles) is considered. The nonlinear three degrees of freedom (3DOF) 4WS vehicle model is employed to describe the uncertainties originating from the operating situations. Further, a normal front-wheel-steering (2WS) vehicle with a drop filter of the sideslip angle is selected as the reference model. The inputs for the rear and front steering angles of the linear 2DOF 4WS, required to achieve the performances described by the reference model, are obtained and controlled by the upper controller. Further, the lower controller is designed to eliminate the state error between the linear 2DOF and nonlinear 3DOF 4WS vehicle models. The simulation results of several vehicle models with/without the controller are presented, and the robustness of the hierarchical control system is analyzed. The simulation results indicate that using the proposed hierarchical controller yields the same performance between the nonlinear 4WS vehicle and the reference model, in addition to exhibiting good robustness.


Sign in / Sign up

Export Citation Format

Share Document