Feeding and Dietary Requirements of the Tephritid Fruit Flies

2021 ◽  
pp. 93-118 ◽  
Author(s):  
George J. Tsiropoulos
Author(s):  
Peter A Follett ◽  
Fay E M Haynes ◽  
Bernard C Dominiak

Abstract Tephritid fruit flies are major economic pests for fruit production and are an impediment to international trade. Different host fruits are known to vary in their suitability for fruit flies to complete their life cycle. Currently, international regulatory standards that define the likely legal host status for tephritid fruit flies categorize fruits as a natural host, a conditional host, or a nonhost. For those fruits that are natural or conditional hosts, infestation rate can vary as a spectrum ranging from highly attractive fruits supporting large numbers of fruit flies to very poor hosts supporting low numbers. Here, we propose a Host Suitability Index (HSI), which divides the host status of natural and conditional hosts into five categories based on the log infestation rate (number of flies per kilogram of fruit) ranging from very poor (<0.1), poor (0.1–1.0), moderately good (1.0–10.0), good (10–100), and very good (>100). Infestation rates may be determined by field sampling or cage infestation studies. We illustrate the concept of this index using 21 papers that examine the host status of fruits in five species of polyphagous fruit flies in the Pacific region: Bactrocera tryoni Froggatt, Bactrocera dorsalis (Hendel), Bactrocera latifrons (Hendel), Zeugodacus cucurbitae (Coquillett), and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). This general-purpose index may be useful in developing systems approaches that rely on poor host status, for determining surveillance and detection protocols for potential incursions, and to guide the appropriate regulatory response during fruit fly outbreaks.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Michael D. Ormsby

AbstractTephritid fruit flies (Diptera; Tephritidae) represent a group of insects that include some of the most economically important pests in horticulture. Because of their economic importance, the financial impacts of an incursion of tephritid fruit flies into a new area can often result in restrictions to trade. The economic impacts of any trade restrictions imposed by importing countries are confounded by the current absence of consistent and accepted criteria for the strength and extent of any trade restrictions and declaring the end of an incursion. The author has developed models that can be used to establish criteria for the management of tephritid fruit fly outbreaks as outlined in international standards. A model enables criteria on when to recognise an incursion has occurred and establish export restrictions. Another model determines what area or radius an export restriction zone (ERZ) should cover. And a third model establishes criteria for the conditions required to enable an ERZ to be rescinded and the area’s pest free status reinstated. The models rely primarily on fruit fly biology and the effectiveness of surveillance trapping systems. The adoption of these proposed criteria internationally for establishing a control system and responding to fruit fly outbreaks would provide considerable economic benefits to international trade. Additionally, these criteria would enable countries to make more informed cost–benefit decisions on the level of investment in fruit fly control systems that better reflects the economic risks fruit flies represent to their economy.


2021 ◽  
Author(s):  
Mohammed E. E. Mahmoud ◽  
Mohammed ◽  
Fathya M. Khamis and ◽  
Sunday Ekesi ◽  

Abstract Fruit flies of the genus Bactrocera are the most damaging pests of horticultural crops, leading to severe economic losses hindered exportation. Bactrocera dorsalis (Hendel) and Bactrocera zonata (Saunders) were reported in Sudan in 2005 and 2011 respectively affecting most of the fruits and vegetables in Sudan threatening income of poor farmers. Only Male Annihilation Technique (MAT) is applied in Sudan to manage the two Bactrocera species. A filed experiment was conducted to evaluate the response of B. dorsalis, B. zonata and Zeugodacus cucurbitae to three food-based attractants using McPhail traps in two sites in Gezira state, Sudan. Also, other trial was undertaken to determine the effect of spray of Mazoferm and Spinosad combination to control B. zonata. The results showed that food-based attractants lured both sexes of the above mentioned fruit flies and females represented (55-86%). At the first site, B. zonata responded in high numbers to Mazoferm followed by Torula yeast and GF-120 respectively while it responded equally to the Mazoferm and Torula yeast in the second site. B. dorsalis responded positively to Mazoferm followed by Torula yeast and GF-120 while Z. cucurbitae was attracted to Mazoferm, GF-120 and Torula for each attractant respectively. Spray of Mazoferm combined with Spinosad significantly reduced population of B. zonata (FTD) population and suppressed infestation level of guava fruits (fruit flies/Kg of fruits) when compared to unsprayed orchard. Bait Application Technique is an environmentally friendly approach that reduces infestation levels, lessen contamination and safeguard produce.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 662
Author(s):  
Flávio R. M. Garcia ◽  
Sérgio M. Ovruski ◽  
Lorena Suárez ◽  
Jorge Cancino ◽  
Oscar E. Liburd

Biological control has been the most commonly researched control tactic within fruit fly management programs. For the first time, a review is carried out covering parasitoids and predators of fruit flies (Tephritidae) from the Americas and Hawaii, presenting the main biological control programs in this region. In this work, 31 species of fruit flies of economic importance are considered in the genera Anastrepha (11), Rhagoletis (14), Bactrocera (4), Ceratitis (1), and Zeugodacus (1). In this study, a total of 79 parasitoid species of fruit flies of economic importance are listed and, from these, 50 are native and 29 are introduced. A total of 56 species of fruit fly predators occur in the Americas and Hawaii.


Sign in / Sign up

Export Citation Format

Share Document