The Role of Street Network Connectivity and Access to Everyday Facilities in Shaping Everyday Walking and Cycling in English Cities

Urban Studies ◽  
2014 ◽  
Vol 52 (13) ◽  
pp. 2483-2497 ◽  
Author(s):  
Amir Hajrasouliha ◽  
Li Yin

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Khaled Galal Ahmed ◽  
S. M. Hossein Alipour

AbstractWith the aim to enhance sustainability in general including walkability, the recent urban forms of the designs of the Emirati neighborhoods have been denser and more compact, if compared with the older design models. While there are various guidelines and regulations related to the microscale walkability measures for the urban design of neighborhoods in the Emirates but unfortunately the macroscale walkability measures have not received similar attention. So, to investigate how would these denser and more compact recent neighborhoods designs better perform regarding walkability macroscale measures, the research utilized the urban modelling interface (UMI) walkability simulation tool to calculate the UMI Walkscores of these designs because it considers almost all macroscale factors including both urban morphology and urban planning measures and it also allows for the customization of the types, required catchment distances, and weights of the significance of locally provided amenities. The UMI Walkscores were calculated for the six recent denser and more compact neighborhoods designs and were compared with the UMI Walkscore for a conventionally designed model of urban sprawling neighborhoods. Unexpectedly, it has been found out that urban compactness per se is not a sufficient design measure for enhancing walkability in local neighborhood designs, where much higher compactness and density have achieved disappointing UMI Walkscores. So, it seems that for the recent neighborhoods’ designs, little attention was paid to the impact of the street network connectivity measures of Intersection Density, Block Length and the link-to-nodes ratio, on UMI Walkscores, if compared with the main attention paid to increasing FAR through decreasing plot sizes. Meanwhile, the explicit macroscale urban planning measures including the land-use factors of the types, numbers, and the location of amenities, as well as the implicit factors of their destination and global weights seem to be more influential in enhancing the UMI Walkscores but have been less considered when planning these neighborhoods. So, besides considering well-known macroscale urban morphology aspects of street network connectivity and locational distribution of provided amenities, boosting walkability macroscale measures on the design level requires adopting a set of adequately customized measures including the appropriate values of their global and distribution weights. These walkability design weights should be also resilient and continuously reviewed to satisfy the changing needs of the local communities. Based on its findings, the research proposed a five-actions plan to help boost walkability macroscale measures in the design of local urban communities in the UAE.


2021 ◽  
pp. 216770262095934
Author(s):  
Julia M. Sheffield ◽  
Holger Mohr ◽  
Hannes Ruge ◽  
Deanna M. Barch

Rapid instructed task learning (RITL) is the uniquely human ability to transform task information into goal-directed behavior without relying on trial-and-error learning. RITL is a core cognitive process supported by functional brain networks. In patients with schizophrenia, RITL ability is impaired, but the role of functional network connectivity in these RITL deficits is unknown. We investigated task-based connectivity of eight a priori network pairs in participants with schizophrenia ( n = 29) and control participants ( n = 31) during the performance of an RITL task. Multivariate pattern analysis was used to determine which network connectivity patterns predicted diagnostic group. Of all network pairs, only the connectivity between the cingulo-opercular network (CON) and salience network (SAN) during learning classified patients and control participants with significant accuracy (80%). CON-SAN connectivity during learning was significantly associated with task performance in participants with schizophrenia. These findings suggest that impaired interactions between identification of salient stimuli and maintenance of task goals contributes to RITL deficits in participants with schizophrenia.


Author(s):  
Lisa Bartha-Doering ◽  
Ernst Schwartz ◽  
Kathrin Kollndorfer ◽  
Florian Ph. S. Fischmeister ◽  
Astrid Novak ◽  
...  

AbstractThe present study is interested in the role of the corpus callosum in the development of the language network. We, therefore, investigated language abilities and the language network using task-based fMRI in three cases of complete agenesis of the corpus callosum (ACC), three cases of partial ACC and six controls. Although the children with complete ACC revealed impaired functions in specific language domains, no child with partial ACC showed a test score below average. As a group, ACC children performed significantly worse than healthy controls in verbal fluency and naming. Furthermore, whole-brain ROI-to-ROI connectivity analyses revealed reduced intrahemispheric and right intrahemispheric functional connectivity in ACC patients as compared to controls. In addition, stronger functional connectivity between left and right temporal areas was associated with better language abilities in the ACC group. In healthy controls, no association between language abilities and connectivity was found. Our results show that ACC is associated not only with less interhemispheric, but also with less right intrahemispheric language network connectivity in line with reduced verbal abilities. The present study, thus, supports the excitatory role of the corpus callosum in functional language network connectivity and language abilities.


2008 ◽  
Vol 237 (6) ◽  
pp. 745-754 ◽  
Author(s):  
I.V. Dokukina ◽  
M.E. Gracheva ◽  
E.A. Grachev ◽  
J.D. Gunton

Sign in / Sign up

Export Citation Format

Share Document