Fire Resistance Performance for Hybrid Fiber Reinforced High Strength Concrete Column Member

2008 ◽  
Vol 20 (6) ◽  
pp. 827-832 ◽  
2013 ◽  
Vol 470 ◽  
pp. 880-883 ◽  
Author(s):  
Heung Youl Kim ◽  
Hyung Jun Kim ◽  
Kyung Hoon Park ◽  
Bum Youn Cho ◽  
Jae Sung Lee

In this study, the fire resistance performance of high-strength concrete columns was evaluated to see the influence of lateral confinement reinforcement with wire ropes for improving ductility, fire resistance reinforcement with fiber cocktail and load ratio. For this, loaded fire test was conducted under ISO834 standard fire condition. The axial ductility of the 60MPa high-strength concrete column reinforced with pre-stressed wire ropes was improved and its fire resistance performance was also improved by 23% compared with its counterpart without wire ropes. The appropriate load for the 60MPa concrete column reinforced with wire ropes was found to be 70% of design load. The fire resistance performance of the 100MPa high-strength concrete column reinforced with pre-stressed wire ropes and fiber-cocktail was improved as much as 4 times compared with that reinforced with tie bars only. The appropriate load for the 100MPa columns was found to be less than 70% of design load in order for the columns to secure required fire resistance performance.


2015 ◽  
Vol 784 ◽  
pp. 385-390
Author(s):  
Ki Seok Kwon ◽  
Heung Youl Kim ◽  
Seung Un Chae ◽  
Bum Yean Cho

More high-rise structures are currently being constructed and correspondingly, the compressive strength of concrete has been increased. However, compared to conventional strength concrete the high strength concrete (HSC) exhibits coarse inner pore structure which blocks escape routes of vapour generated in the event of fire. This results in spalling and subsequently, are responsible for fire vulnerability of the structure. In addition, spalling phenomena is also affected by the section dimensions of HSC which is also another crucial factor from socio-economic considerations. Thus, this study was carried out to evaluate the fire resistance performance of hybrid fiber (i.e. steel-polypropylene-fibre)-reinforced HSC columns with different cross-section dimensions. The result of the fire resistance performance testing using 100MPa concrete showed that delay to failure was observed by approximately 76 per cent.


Sign in / Sign up

Export Citation Format

Share Document